Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alois Hofbauer is active.

Publication


Featured researches published by Alois Hofbauer.


Neuron | 2001

The Circadian Clock of Fruit Flies Is Blind after Elimination of All Known Photoreceptors

Charlotte Helfrich-Förster; Christine Winter; Alois Hofbauer; Jeffrey C. Hall; Ralf Stanewsky

Circadian rhythms are entrained by light to follow the daily solar cycle. We show that Drosophila uses at least three light input pathways for this entrainment: (1) cryptochrome, acting in the pacemaker cells themselves, (2) the compound eyes, and (3) extraocular photoreception, possibly involving an internal structure known as the Hofbauer-Buchner eyelet, which is located underneath the compound eye and projects to the pacemaker center in the brain. Although influencing the circadian system in different ways, each input pathway appears capable of entraining circadian rhythms at the molecular and behavioral level. This entrainment is completely abolished in glass(60j) cry(b) double mutants, which lack all known external and internal eye structures in addition to being devoid of cryptochrome.


Journal of Neurogenetics | 1990

A Cysteine-String Protein is Expressed in Retina and Brain of Drosophila

Konrad E. Zinsmaier; Alois Hofbauer; Gertrud Heimbeck; Gert O. Pflugfelder; Sigrid Buchner; Erich Buchner

Antibodies can be used to identify tissue- and stage-specifically expressed genes. A monoclonal antibody MAB ab49 from a hybridoma library screened for immunohistochemical staining in the adult nervous system of Drosophila melanogaster was found to selectively bind to all neuropil regions and to synaptic boutons of motor neurons. In Western blots of homogenized brains the antibody recognizes two proteins of 32 and 34 kD. Using this antibody we have isolated seven cDNA clones that derive from two polyadenylated mRNA splice variants of a gene located at 79E1-2 on polytene chromosomes. The two mRNAs code for two inferred proteins of 249 and 223 amino acids, respectively, which are identical except for their C-terminals and a central deletion of 21 amino acids in the second protein. Both contain a contiguous string of 11 cysteine residues. In situ hybridization to frozen head sections detects expression of this gene in retina and neuronal perikarya. The 32 and 34 kD brain proteins that presumably are localized predominantly in synaptic terminals of photoreceptors and most if not all neurons may correspond to two variant cysteine-string proteins as they are of similar molecular weight and share an antigenic binding site for MAB ab49.


Cell and Tissue Research | 1991

Histamine-like immunoreactivity in the visual system and brain of Drosophila melanogaster.

Inken Pollack; Alois Hofbauer

SummaryIn this study, immunohistochemistry on cryostat sections is used to demonstrate anti-histamine immunoreactivity in the Drosophila brain. The results support earlier findings that histamine is probably a transmitter of insect photoreceptors. It is further shown that, in Drosophila, all imaginal photoreceptors including receptor type R7 are anti-histamine immunoreactive, whereas the larval photoreceptors do not seem to contain histamine. In addition to the photoreceptors, fibres in the antennal nerve and approximately 12 neurons in each brain hemisphere show strong histamine-like immunoreactivity. These cells arborize extensively in large parts of the central brain.


Cell and Tissue Research | 1997

GAL4-responsive UAS-tau as a tool for studying the anatomy and development of the Drosophila central nervous system.

Kei Ito; Heinz Sass; Joachim Urban; Alois Hofbauer; Stephan Schneuwly

Abstract. To improve the quality of cytoplasmic labelling of GAL4-expressing cells in Drosophila enhancer-trap and transgenic strains, a new GAL4-responsive reporter UAS-tau, which features a bovine tau cDNA under control of a yeast upstream activation sequence (UAS), was tested. Tau, a microtubule-associated protein, is distributed actively and evenly into all cellular processes. Monoclonal anti-bovine Tau antibody reveals the axonal structure of the labelled cells with detail similar to that of Golgi impregnation. We demonstrate that the UAS-tau system is especially useful for studying processes of differentiation and reorganisation of identified neurones during postembryonic development.


Cell and Tissue Research | 1988

Cell-specific immuno-probes for the brain of normal and mutant Drosophila melanogaster

Erich Buchner; Renate Bader; Sigrid Buchner; Jos A. Cox; Piers C. Emson; Egbert Flory; Claus W. Heizmann; Susanne Hemm; Alois Hofbauer; Wolfgang H. Oertel

SummaryWe have screened antibodies for immunocytochemical staining in the optic lobes of the brain of Drosophila melanogaster. Seven polyclonal antisera and five monoclonal antibodies are described that selectively and reproducibly stain individual cells and/or produce characteristic staining patterns in the neuropile. Such antisera are useful for the cellular characterization of molecular and structural brain defects in visual mutants. In the wildtype visual system we can at present separately stain the following: the entire complement of columnar “ T 1” neurons; a small set of presumptive serotonergic neurons; some 3000 cells that contain and synthesize γ-amino butyric acid (GABA); and three groups of cells that bind antibodies to Ca2+-binding proteins. In addition, small groups of hitherto unknown tangential cells that send fine arborizations into specific strata of the medulla, and two patterns of characteristic layers in the visual neuropile have been identified by use of monoclonal antibodies generated following immunization of mice with homogenates of the brain of Drosophila melanogaster.


Cell and Tissue Research | 1993

Histamine is a major mechanosensory neurotransmitter candidate in Drosophila melanogaster.

Erich Buchner; Sigrid Buchner; Martin G. Burg; Alois Hofbauer; William L. Pak; Inken Pollack

Histamine is known to be the neurotransmitter of insect photoreceptors. Histamine-like immunoreactivity is also found in a number of interneurons in the central nervous system of various insects. Here, we demonstrate by immunohistochemical techniques that, in Drosophila melanogaster (Acalypterae), most or all mechanosensory neurons of imaginal hair sensilla selectively bind antibodies directed against histamine. The histamine-like staining includes the cell bodies of these neurons as well as their axons, which form prominent fibre bundles in peripheral nerves, and their terminal projections in the central neuropil of head and thoracic ganglia. The specificity of the immunostaining is demonstrated by investigating a Drosophila mutant unable to synthesize histamine. Other mechanosensory organs, such as campaniform sensilla or scolopidial organs, do not stain. In the calypteran flies, Musca and Calliphora, we find no comparable immunoreactivity associated with either hair sensilla or the nerves entering the central nervous system, observations in agreement with earlier studies on Calliphora. Thus, histamine seems to be a major mechanosensory transmitter candidate of the adult nervous system of Drosophila, but apparently not of Musca or Calliphora.


Journal of Neurogenetics | 2009

The Wuerzburg hybridoma library against Drosophila brain.

Alois Hofbauer; Thomas Ebel; Bernhard Waltenspiel; Peter Oswald; Yi-chun Chen; Partho Halder; Saskia Biskup; Urs Lewandrowski; Christiane Winkler; Albert Sickmann; Sigrid Buchner; Erich Buchner

Abstract: This review describes the present state of a project to identify and characterize novel nervous system proteins by using monoclonal antibodies (mAbs) against the Drosophila brain. Some 1,000 hybridoma clones were generated by injection of homogenized Drosophila brains or heads into mice and fusion of their spleen cells with myeloma cells. Testing the mAbs secreted by these clones identified a library of about 200 mAbs, which selectively stain specific structures of the Drosophila brain. Using the approach “from antibody to gene”, several genes coding for novel proteins of the presynaptic terminal were cloned and characterized. These include the “cysteine string protein” gene (Csp, mAb ab49), the “synapse-associated protein of 47 kDa” gene (Sap47, mAbs nc46 and nb200), and the “Bruchpilot” gene (brp, mAb nc82). By a “candidate” approach, mAb nb33 was shown to recognize the pigment dispersing factor precursor protein. mAbs 3C11 and pok13 were raised against bacterially expressed Drosophila synapsin and calbindin-32, respectively, after the corresponding cDNAs had been isolated from an expression library by using antisera against mammalian proteins. Recently, it was shown that mAb aa2 binds the Drosophila homolog of “epidermal growth factor receptor pathway substrate clone 15” (Eps15). Identification of the targets of mAbs na21, ab52, and nb181 is presently attempted. Here, we review the available information on the function of these proteins and present staining patterns in the Drosophila brain for classes of mAbs that either bind differentially in the eye, in neuropil, in the cell-body layer, or in small subsets of neurons. The prospects of identifying the corresponding antigens by various approaches, including protein purification and mass spectrometry, are discussed.


Cell and Tissue Research | 1998

Wide distribution of the cysteine string proteins in Drosophila tissues revealed by targeted mutagenesis.

Kai K. Eberle; Konrad E. Zinsmaier; Sigrid Buchner; Matthias Gruhn; Mario Jenni; Christine Arnold; Christian Leibold; Dietmar Reisch; Nik Walter; Ernst Hafen; Alois Hofbauer; Gert O. Pflugfelder; Erich Buchner

Abstract The “cysteine string protein” (CSP) genes of higher eukaryotes code for a novel family of proteins characterized by a “J” domain and an unusual cysteine-rich region. Previous studies had localized the proteins in neuropil and synaptic terminals of larval and adult Drosophila and linked the temperature-sensitive paralysis of the mutants described here to conditional failure of synaptic transmission. We now use the null mutants as negative controls in order to reliably detect even low concentrations of CSPs by immunohistochemistry, employing three monoclonal antibodies. In wild-type flies high levels of cysteine string proteins are found not only in apparently all synaptic terminals of the embryonic, larval, and adult nervous systems, but also in the “tall cells” of the cardia, in the follicle cells of the ovary, in specific structures of the female spermatheca, and in the male testis and ejaculatory bulb. In addition, low levels of CSPs appear to be present in all tissues examined, including neuronal perikarya, axons, muscles, Malpighian tubules, and salivary glands. Western blots of isolated tissues demonstrate that of the four isoforms expressed in heads only the largest is found in non-neural organs. The wide expression of CSPs suggests that at least some of the various phenotypes of the null mutants observed at permissive temperatures, such as delayed development, short adult lifespan, modified electroretinogram, and optomotor behavior, may be caused by the lack of CSPs outside synaptic terminals.


Archive | 1991

A Novel EF-Hand Ca2+-Binding Protein is Expressed in Discrete Subsets of Muscle and Nerve Cells of Drosophila

Rita Reifegerste; Claudia Faust; Norbert Lipski; Gertrud Heimbeck; Alois Hofbauer; Gert O. Pflugfelder; Konrad E. Zinsmaier; Claus W. Heizmann; Sigrid Buchner; Erich Buchner

Various Ca2+-binding proteins have been identified in vertebrate brain cells but their functions remain largely speculative (review Heizmann and Braun 1990). This is because vertebrate neurons cannot easily be manipulated genetically in vivo. In Drosophila, however, cloned genes can be mutated and the effects of a lack of the functional gene product on the performance of the otherwise intact neuronal network can be studied.


PLOS ONE | 2013

Identification and Structural Characterization of Interneurons of the Drosophila Brain by Monoclonal Antibodies of the Wurzburg Hybridoma Library

Beatriz Blanco Redondo; Melanie Bunz; Partho Halder; Madhumala K. Sadanandappa; Barbara Mühlbauer; Felix Erwin; Alois Hofbauer; Veronica Rodrigues; K. VijayRaghavan; Mani Ramaswami; Dirk Rieger; Christian Wegener; Charlotte Förster; Erich Buchner

Several novel synaptic proteins have been identified by monoclonal antibodies (mAbs) of the Würzburg hybridoma library generated against homogenized Drosophila brains, e.g. cysteine string protein, synapse-associated protein of 47 kDa, and Bruchpilot. However, at present no routine technique exists to identify the antigens of mAbs of our library that label only a small number of cells in the brain. Yet these antibodies can be used to reproducibly label and thereby identify these cells by immunohistochemical staining. Here we describe the staining patterns in the Drosophila brain for ten mAbs of the Würzburg hybridoma library. Besides revealing the neuroanatomical structure and distribution of ten different sets of cells we compare the staining patterns with those of antibodies against known antigens and GFP expression patterns driven by selected Gal4 lines employing regulatory sequences of neuronal genes. We present examples where our antibodies apparently stain the same cells in different Gal4 lines suggesting that the corresponding regulatory sequences can be exploited by the split-Gal4 technique for transgene expression exclusively in these cells. The detection of Gal4 expression in cells labeled by mAbs may also help in the identification of the antigens recognized by the antibodies which then in addition to their value for neuroanatomy will represent important tools for the characterization of the antigens. Implications and future strategies for the identification of the antigens are discussed.

Collaboration


Dive into the Alois Hofbauer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge