Alois Jungbauer
University of Natural Resources and Life Sciences, Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alois Jungbauer.
Environmental Toxicology | 2014
Svjetlana Medjakovic; Alfred Zoechling; Petra Gerster; Margarita M. Ivanova; Yun Teng; Carolyn M. Klinge; Barbara Schildberger; Michael Gartner; Alois Jungbauer
Nonpersistent pesticides are considered less harmful for the environment, but their impact as endocrine disruptors has not been fully explored. The pesticide Switch was applied to grape vines, and the maximum residue concentration of its active ingredients was quantified. The transactivation potential of the pesticides Acorit, Frupica, Steward, Reldan, Switch, Cantus, Teldor, and Scala and their active compounds (hexythiazox, mepanipyrim, indoxacarb, chlorpyrifos‐methyl, cyprodinil, fludioxonil, boscalid, fenhexamid, and pyrimethanil) were tested on human estrogen receptor α (ERα), androgen receptor (AR) and arylhydrocarbon receptor (AhR) in vitro. Relative binding affinities of the pure pesticide constituents for AR and their effect on human breast cancer and prostate cancer cell lines were evaluated. Residue concentrations of Switchs ingredients were below maximum residue limits. Fludioxonil and fenhexamid were ERα agonists (EC50‐values of 3.7 and 9.0 μM, respectively) and had time‐dependent effects on endogenous ERα‐target gene expression (cyclin D1, progesterone receptor, and nuclear respiratory factor 1) in MCF‐7 human breast cancer cells. Fludioxonil, mepanipyrim, cyprodinil, pyrimethanil, and chlorpyrifos‐methyl were AhR‐agonists (EC50s of 0.42, 0.77, 1.4, 4.6, and 5.1 μM, respectively). Weak AR binding was shown for chlorpyrifos‐methyl, cyprodinil, fenhexamid, and fludioxonil. Assuming a total uptake which does not take metabolism and clearance rates into account, our in vitro evidence suggests that pesticides could activate pathways affecting hormonal balance, even within permitted limits, thus potentially acting as endocrine disruptors.
Journal of Biochemical and Biophysical Methods | 2001
A. Einhauer; Alois Jungbauer
A fusion tag, called FLAG and consisting of eight amino acids (AspTyrLysAspAspAspAspLys) including an enterokinase-cleavage site, was specifically designed for immunoaffinity chromatography. It allows elution under non-denaturing conditions [Bio/Technology, 6 (1988) 1204]. Several antibodies against this peptide have been developed. One antibody, denoted as M1, binds the peptide in the presence of bivalent metal cations, preferably Ca(+). Elution is effected by chelating agents. Another strategy is competitive elution with excess of free FLAG peptide. Antibodies M2 and M5 are applied in this procedure. Examples demonstrating the versatility, practicability and limitations of this technology are given.
Journal of Chromatography B | 2003
Rainer Hahn; Robert Schlegel; Alois Jungbauer
Protein A is a popular generic ligand for purification of monoclonal and recombinant antibodies. The performance of 15 commercially available protein A media was studied. Equilibrium and dynamic binding capacity for human IgG was determined and the capture of IgG from a crude feed-stock was investigated. For initial screening the dynamic binding capacity was determined at small scale. Media with good performance were further tested with increased column height. Comparing the data from the two different column heights it could be shown that the dynamic capacity strongly depends on the residence time. Agarose based media exhibited higher binding capacity at residence times longer than 3 min whereas polymeric media or media based on porous glass showed a lesser dependence on the flow velocity and the residence time. A quantitative description of this behavior was derived by determination of the adsorption isotherms and fitting the breakthrough profiles with the Thomas solution. Agarose based media exhibited higher maximum equilibrium binding capacities and the dissociation constants derived from adsorption isotherms were smaller. The other media exhibited higher apparent rate constants, indicating a faster mass transfer. This can be explained by the smaller particle diameter of these media and it can be assumed that constant pattern conditions are thereby obtained more quickly. Selectivity was tested by performing antibody purification under standardized conditions. Polyclonal human IgG in cell culture supernatant containing 2.5% fetal calf serum was used as a representative feed-stock. Under the applied conditions several sorbents showed very tight binding of IgG and in some cases most of the sample remained on the sorbent. The study can be useful as a guide for optimization of large-scale purification processes.
Journal of Chromatography B: Biomedical Sciences and Applications | 2001
Djuro Josic; Andrea Buchacher; Alois Jungbauer
Monoliths are considered as a novel generation of stationary phases. They were applied for capillary electrochromatography and liquid chromatography exploiting every action principle such as ion-exchange, affinity recognition, reversed-phase, and hydrophobic interaction. The fast separation was explained by convective transport of the solutes through the bed. The contribution of this mode of transport is similarly explained as done for the beds packed with particles with gigapores. For monolithic beds, the concept of an ultrashort bed was frequently used. This mode of operation allows very short separation time. In many cases a gradient elution is necessary to achieve separation. Examples of applications for protein and polynucleotide separation performed on monoliths are given. Enzymatic conversion was described showing the examples of several immobilzed enzymes.
The Journal of Steroid Biochemistry and Molecular Biology | 2005
Verena Beck; U. Rohr; Alois Jungbauer
The benefits of plant extracts from soy and red clover as alternatives to conventional hormone replacement therapy (HRT) have been debated in the past. Here, an attempt has been made to summarize the biochemical and pharmacological data in the light of clinical aspects. Red clover and soy extracts contain isoflavones, which have a high affinity to estrogen receptor alpha (ERalpha), estrogen receptor beta (ERbeta), progesterone receptor (PR) and androgen receptor (AR). The higher affinity to ERbeta compared to ERalpha has been used as an explanation why red clover extracts function as food additives to treat menopausal disorders and may reduce risk of breast cancer. Biochemical analysis shows that these representatives of phytoestrogens have multiple actions beside selective estrogen receptor modulator (SERM)-activity. They act as selective estrogen enzyme modulators (SEEMs), have antioxidant activity and interact with transcription factors such as NF-kappaB. Furthermore, it is indicated that they have protective effects on osteoporosis and the cardiovascular system. Currently 40-50mg of isoflavones (biochanin A, daidzein, formononetin and genistein) are recommended as daily dose. This recommendation is based on the daily intake of phytoestrogens in a traditional Japanese diet.
The Journal of Steroid Biochemistry and Molecular Biology | 2003
Verena Beck; E Unterrieder; Liselotte Krenn; Wolfgang Kubelka; Alois Jungbauer
Extracts from red clover (Trifolium pratense), soybean (Glycine max.) and black cohosh (Cimicifuga racemosa) are frequently used as alternative compounds for hormone replacement therapy (HRT) to treat menopausal disorders. Fifteen commercially available products made either from red clover, soybean or black cohosh were tested in in vitro assays in this study. The main polycyclic phenolic compounds of soy and red clover products were biochanin A, genistein, daidzein, formononetin, and glycitein. In red clover products glycitein was not abundant. All the compounds showed clear estrogenic activity through estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta) and affinity to progesterone receptor (PR) and androgen receptor (AR), whereas the compounds from black cohosh did not. This was corroborated by synthetic isoflavones such as biochanin A, daidzein, genistein and formononetin. They exerted affinity to PR and AR in the range of 0.39-110 mM. Statistical analysis applying principal component analysis (PCA) revealed that all red clover and soy products are grouped in different clusters. Red clover products showed a higher affinity to AR and PR than soy products, which is explained by the higher amount of isoflavones present. In vitro assays and chemical analysis showed that theoretical estrogenic activity expressed as equivalent E2 concentration is in the same range as recommended for synthetic estrogens. Broader spectrum of action and hypothesized lower side effects by action through ERbeta make them suitable for alternative hormone replacement therapy.
Journal of Chromatography A | 1990
Pier Giorgio Righetti; Elisabeth Wenisch; Alois Jungbauer; Hermann Katinger; Michel Faupel
The performance of a multi-compartment electrolyser with isoelectric Immobiline membranes for large-scale protein purification is evaluated. Owing to the presence of isoelectric membranes possessing a high buffering capacity and ionic strength, isoelectric protein precipitation inside the membranes, one of the major drawbacks of present membrane uses, is fully avoided. In addition, owing to this novel membrane technology, pH gradient decay, typical of isoelectric focusing in carrier ampholytes, is fully eliminated and pH and conductivity constancy is guaranteed in all flow chambers for running periods of more than 11 days (160,000 V h). The membranes described possess a unique selectivity, in that they act by modulating the surface charge (i.e., the mobility) of macroions crossing or tangential to them. The concept of isoelectric Immobiline membranes acting like a pH-stat unit is introduced. Protein homogeneity in each chamber of the electrolyser can be achieved even when purifying human monoclonal antibodies against HIV-1, which possess high pI values (9.0-9.6), are large molecules (Mr 150,000) and are fractionated in the presence of large micelles of neutral detergents.
Nature Methods | 2007
Clemens Achmüller; Waltraud Kaar; Karin Ahrer; Philipp Wechner; Rainer Hahn; Florian Werther; Hannes Schmidinger; Monika Cserjan-Puschmann; Franz Clementschitsch; Gerald Striedner; Karl Bayer; Alois Jungbauer; Bernhard Auer
We describe a prokaryotic expression system using the autoproteolytic function of Npro from classical swine fever virus. Proteins or peptides expressed as Npro fusions are deposited as inclusion bodies. On in vitro refolding by switching from chaotropic to kosmotropic conditions, the fusion partner is released from the C-terminal end of the autoprotease by self-cleavage, leaving the target protein with an authentic N terminus. A tailor-made Npro mutant called EDDIE, with increased in vitro and decreased in vivo cleavage rates, has enabled us to express proinsulin, domain-D of staphylococcal protein A, hepcidin, interferon-α1, keratin-associated protein 10-4, green fluorescent protein, inhibitorial peptide of senescence-evasion-factor, monocyte chemoattractant protein-1 and toxic gyrase inhibitor, among others. This Npro expression system can be used as a generic tool for the high-level production of recombinant toxic peptides and proteins (up to 12 g/l) in Escherichia coli without the need for chemical or enzymatic removal of the fusion tag.
The Journal of Steroid Biochemistry and Molecular Biology | 2001
Eva Dornstauder; Elisabeth Jisa; I Unterrieder; Liselotte Krenn; W Kubelka; Alois Jungbauer
Isoflavones are the most potent estrogenic compounds in red clover extracts. Standardized extracts have been discussed as an alternative for hormone replacement therapy. Variation due to extraction procedure and natural seasonal variation and variations originating from agricultural conditions have prevented the large scale use of such phytochemicals. An improved extraction procedure and careful analysis of the raw material yielded in a highly standardized preparation (Menoflavon) with an average isoflavone content of approximately 9% (dry weight) determined by HPLC. The estrogenic activity has been further evaluated by a yeast two plasmid system using estrogen receptor alpha (ER alpha) and estrogen receptor beta (ER beta). An estrogenic activity corresponding to a transactivational capacity of ca. 18 microg 17 beta-estradiol per g red clover extract for ER alpha and ca. 78 microg 17 beta-estradiol per g red clover for ER beta was obtained. The difference is explained by the higher affinity of ER beta to isoflavones than that observed for ER alpha. Calculation of potency from isoflavone content measured by HPLC yielded a comparable potency to that experimentally determined by the bioassay. The high content of isoflavones as well as the higher transactivational potency for ER beta than ER alpha make these extracts interesting candidates for HRT.
The Journal of Steroid Biochemistry and Molecular Biology | 1998
Astrid Breithofer; Klaus Graumann; Marshall S. Scicchitano; Sotirios K. Karathanasis; Tauseef R. Butt; Alois Jungbauer
Phytoestrogens are defined as plant substances that are structurally or functionally similar to estrogen. They are present in many foods and their higher consumption in certain populations has been correlated with protection against many diseases including coronary heart disease, breast cancer and endometrial and ovarian cancer. In this report, ten phytoestrogens with diverse chemical structures were studied for their binding to the human estrogen receptor and their transcription activation properties in yeast and mammalian cells. Our results showed that some of these compounds bind with relatively high affinity to the estrogen receptor and activate the receptor in the yeast and mammalian cell system. In addition, none of these compounds showed anti-estrogenic activity. We conclude that the yeast system accurately predicts the estrogenic activity of compounds with diverse chemical structures in mammalian cells. In addition, our data with phytoestrogens that do not show transcription activation properties raise the possibility that these compounds may exert their biological effects through pathways different from the classical estrogen signalling mechanism.