Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alok Bhushan is active.

Publication


Featured researches published by Alok Bhushan.


International Journal of Nanomedicine | 2008

Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts

James C. K. Lai; Maria B. Lai; Sirisha Jandhyam; Vikas V. Dukhande; Alok Bhushan; Christopher K. Daniels; Solomon W. Leung

The use of titanium dioxide (TiO2) in various industrial applications (eg, production of paper, plastics, cosmetics, and paints) has been expanding thereby increasing the occupational and other environmental exposure of these nanoparticles to humans and other species. However, the health effects of exposure to TiO2 nanoparticles have not been systematically assessed even though recent studies suggest that such exposure induces inflammatory responses in lung tissue and cells. Because the effects of such nanoparticles on human neural cells are unknown, we have determined the putative cytotoxic effects of these nanoparticles on human astrocytes-like astrocytoma U87 cells and compared their effects on normal human fibroblasts. We found that TiO2 micro- and nanoparticles induced cell death on both human cell types in a concentration-related manner. We further noted that zinc oxide (ZnO) nanoparticles were the most effective, TiO2 nanoparticles the second most effective, and magnesium oxide (MgO) nanoparticles the least effective in inducing cell death in U87 cells. The cell death mechanisms underlying the effects of TiO2 micro- and nanoparticles on U87 cells include apoptosis, necrosis, and possibly apoptosis-like and necrosis-like cell death types. Thus, our findings may have toxicological and other pathophysiological implications on exposure of humans and other mammalian species to metallic oxide nanoparticles.


Journal of Biological Chemistry | 1999

Impaired membrane transport in methotrexate-resistant CCRF-CEM cells involves early translation termination and increased turnover of a mutant reduced folate carrier

So C. Wong; Long Zhang; Teah L. Witt; Susan A. Proefke; Alok Bhushan; Larry H. Matherly

The basis for impaired reduced folate carrier (RFC) activity in methotrexate-resistant CCRF-CEM (CEM/Mtx-1) cells was examined. Parental and CEM/Mtx-1 cells expressed identical levels of the 3.1-kilobase RFC transcript. A ∼85-kDa RFC protein was detected in parental cells by photoaffinity labeling and on Western blots with RFC-specific antiserum. In CEM/Mtx-1 cells, RFC protein was undetectable. By reverse transcriptase-polymerase chain reaction and sequence analysis, G to A point mutations were identified in CEM/Mtx-1 transcripts at positions 130 (P1; changes glycine 44 → arginine) and 380 (P2; changes serine 127 → asparagine). A 4-base pair (CATG) insertion detected at position 191 (in 19–30% of cDNA clones) resulted in a frameshift and early translation termination. Wild-type RFC was also detected (0–9% of clones). Wild-type RFC and double-mutated RFC (RFCP1+P2) cDNAs were transfected into transport-impaired K562 and Chinese hamster ovary cells. Although RFC transcripts paralleled wild-type protein, for the RFCP1+P2 transfectants, disproportionately low RFCP1+P2 protein was detected. This reflected an increased turnover of RFCP1+P2 over wild-type RFC. RFCP1+P2 did not restore methotrexate transport; however, uptake was partially restored by constructs with single mutations at the P1 or P2 loci. Cumulatively, our results show that loss of transport function in CEM/Mtx-1 cells results from complete loss of RFC protein due to early translation termination and increased turnover of a mutant RFC protein.


Neurochemical Research | 2004

Differential Lowering by Manganese Treatment of Activities of Glycolytic and Tricarboxylic Acid (TCA) Cycle Enzymes Investigated in Neuroblastoma and Astrocytoma Cells Is Associated with Manganese-Induced Cell Death

Gaurangi V. Malthankar; Brenda K. White; Alok Bhushan; Christopher K. Daniels; Kenneth J. Rodnick; James C. K. Lai

Manganese (Mn) is a trace metal required for normal growth and development. Manganese neurotoxicity is rare and usually associated with occupational exposures. However, the cellular and molecular mechanisms underlying Mn toxicity are still elusive. In rats chronically exposed to Mn, their brain regional Mn levels increase in a dose-related manner. Brain Mn preferentially accumulates in mitochondria; this accumulation is further enhanced with Mn treatment in vivo. Exposure of mitochondria to Mn in vitro leads to uncoupling of oxidative phosphorylation. These observations prompted us to investigate the hypothesis that Mn induces alterations in energy metabolism in neural cells by interfering with the activities of various glycolytic and TCA cycle enzymes using human neuroblastoma (SK-N-SH) and astrocytoma (U87) cells. Treatments of SK-N-SH and U87 cells with MnCl2 induced cell death in these cells, in a concentration- and time-dependent manner, as determined by MTT assays. In parallel with the Mn-induced, dose-dependent decrease in cell survival, treatment of these cells with 0.01 to 4.0 mM MnCl2 for 48 h also induced dose-related decreases in their activities of hexokinase, pyruvate kinase, lactate dehydrogenase, citrate synthase, and malate dehydrogenase. Hexokinase in SK-N-SH cells was the most affected by Mn treatments, even at the lower range of concentrations. Mn treatment of SK-N-SH cells affected pyruvate kinase and citrate synthase to a lesser extent as compared to its effect on other enzymes investigated. However, citrate synthase and pyruvate kinase in U87 cells were more vulnerable than other enzymes investigated to the effects of Mn. The results suggest the two cell types exhibited differential susceptibility toward the Mn-induced effects. Additionally, the results may have significant implications in flux control because HK is the first and highly regulated enzyme in brain glycolysis. Thus these results are consistent with our hypothesis and may have pathophysiological implications in the mechanisms underlying Mn neurotoxicity.


Journal of Neuro-oncology | 2006

Inhibition of matrix degrading enzymes and invasion in human glioblastoma (U87MG) Cells by isoflavones

Shilpa Puli; James C. K. Lai; Alok Bhushan

SummaryGlioblastoma multiforme is a primary brain tumor associated with extensive invasion into surrounding brain tissue. Matrix metalloproteinases (MMPs) and urokinase plasminogen activation (uPA) system are shown to be involved in tumor invasion as they help in degradation of extracellular matrix (ECM) proteins and thus assist in the movement of cells. MMP-2 and 9 were shown to be upregulated in gliomas, suggesting their involvement in invasion. Genistein and biochanin A are isoflavones commonly known as phytoestrogens and have some anticancer properties. We hypothesize that these two isoflavones can induce a lowering of tumor invasion by decreasing the activity of matrix degrading enzymes. In this study we investigated the effects of genistein and biochanin A on invasive activity of U87MG cells using the Calbiochem in vitro invasion assay system. Our results suggest that genistein and biochanin A induced a decrease in invasive activity of U87MG cells in a dose-related manner. Genistein also induced a decrease in EGF-stimulated invasion thereby implicating an involvement of EGF-mediated signaling in invasion. Our results also show that treatment of U87MG cells with the two isoflavones induced decreases in the enzymatic activity of MMP-9 and the protein levels of MT1-MMP and uPAR.


Evidence-based Complementary and Alternative Medicine | 2010

Inhibition of Cell Proliferation and MAP Kinase and Akt Pathways in Oral Squamous cell Carcinoma by Genistein and Biochanin A.

Tara Johnson; Maria B. Lai; James C. K. Lai; Alok Bhushan

High morbidity and mortality associated with oral squamous cell carcinoma (OSCC) are largely attributable to late stage diagnosis. Despite significant advances in therapeutic strategies, the five-year survival rate for oral cancer remains at about 50%. A chemopreventive approach may be an effective alternative or adjunct to current therapies. Previous studies have shown anti-tumor effects of isoflavones in several cancers, including oral cancer. However, their mechanisms of action are still unclear. We hypothesized that isoflavones inhibit multiple signaling pathways implicated in oral carcinogenesis. To address our hypothesis, we investigated the effects of three isoflavone derivatives, genistein, biochanin A and daidzein, on SCC15 and SCC25 squamous cell carcinoma cell lines. In cell proliferation experiments, we found that genistein and biochanin A inhibited SCC15 and SCC25 cell growth with an IC50 of 50 μM. We also investigated the effect of isoflavones on ERK and Akt pathways. Our results, from western blot analysis, suggest that both genistein and biochanin A induced decreases in phosphorylation of ERK and Akt at treatment concentrations of 20, 50 and 100 μM. Taken together, our results clearly demonstrate a differential regulation of signaling pathways by various isoflavones in OSCC cell lines. Thus, tumor progression models can be utilized to study the preventive and therapeutic roles of isoflavones in oral cancer cell lines.


Journal of Oncology | 2009

Biochanin A Modulates Cell Viability, Invasion, and Growth Promoting Signaling Pathways in HER-2-Positive Breast Cancer Cells.

Vikas Sehdev; James C. K. Lai; Alok Bhushan

Overexpression of HER-2 receptor is associated with poor prognosis and aggressive forms of breast cancer. Scientific literature indicates a preventive role of isoflavones in cancer. Since activation of HER-2 receptor initiates growth-promoting events in cancer cells, we studied the effect of biochanin A (an isoflavone) on associated signaling events like receptor activation, downstream signaling, and invasive pathways. HER-2-positive SK-BR-3 breast cancer cells, MCF-10A normal breast epithelial cells, and NIH-3T3 normal fibroblast cells were treated with biochanin A (2–100 μM) for 72 hours. Subsequently cell viability assay, western blotting and zymography were carried out. The data indicate that biochanin A inhibits cell viability, signaling pathways, and invasive enzyme expression and activity in SK-BR-3 cancer cells. Biochanin A did not inhibit MCF-10A and NIH-3T3 cell viability. Therefore, biochanin A could be a unique natural anticancer agent which can selectively target cancer cells and inhibit multiple signaling pathways in HER-2-positive breast cancer cells.


Anti-Cancer Drugs | 2014

Biochanin A reduces pancreatic cancer survival and progression.

Vikas Bhardwaj; Satya Murthy Tadinada; Aditi Jain; Vikas Sehdev; Christopher K. Daniels; James C. K. Lai; Alok Bhushan

Pancreatic cancer has dismally low mean survival rates worldwide. Only a few chemotherapeutic agents including gemcitabine have been shown to improve the survival of pancreatic cancer patients. Biochanin A, an isoflavone, is known to exert an anticancer effect on various cancer types. In this study, we examined the anticancer properties of biochanin A on pancreatic cancer cells. The effect of biochanin A on cellular survival, apoptosis, and proliferation was analyzed using MTT, flow cytometry, and colony formation assay. The effect of biochanin A on pancreatic cancer’s mitogenic signaling was determined using western blot analysis. Migration assay and zymography were used to determine biochanin A’s effect on pancreatic cancer progression. Biochanin A induced dose-dependent toxicity on pancreatic cancer cells (Panc1 and AsPC-1). It reduced colony formation ability of Panc1 cells and induced dose-dependent apoptosis. Activation of Akt and MAPK was inhibited. Furthermore, the migratory and invasive potential of the cancer cells was also reduced. The results suggest that biochanin A is effective in reducing pancreatic cancer cell survival by inhibiting their proliferation and inducing apoptosis. It affects mitogenic, migratory, and invasive processes involved in cancer progression. These findings may lead to novel approaches to treat pancreatic cancer using isoflavones in combination with other therapeutic drugs.


International Journal of Nanomedicine | 2010

Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins.

James Ck Lai; gayathri Ananthakrishnan; Sirisha Jandhyam; Vikas V. Dukhande; Alok Bhushan; Mugdha gokhale; Christopher K. Daniels; Solomon W. Leung

Recent evidence suggests silicon dioxide micro- and nanoparticles induce cytotoxic effects on lung cells. Thus, there is an increasing concern regarding their potential health hazard. Nevertheless, the putative toxicity of nanoparticles in mammalian cells has not yet been systematically investigated. We previously noted that several metallic oxide nanoparticles exert differential cytotoxic effects on human neural and nonneural cells. Therefore, we hypothesized that silicon dioxide nanoparticles induce cytotoxicity in U87 cells by lowering their survival by decreasing cell survival signaling and disturbing mitochondrial function. To investigate this hypothesis, we determined the activities of the key mitochondrial enzymes, citrate synthase and malate dehydrogenase, in astrocytoma U87 cells treated with silicon dioxide nanoparticles. In addition, we studied the expression of the mitochondrial DNA-encoded proteins, cytochrome C oxidase II and nicotinamide adenine dinucleotide (NADPH) dehydrogenase subunit 6, and cell signaling pathway protein extracellular signal-regulated kinase (ERK) and phosphorylated ERK in treated U87 cells. The activated form of ERK controls cell growth, differentiation, and proliferation. In parallel, we determined survival of U87 cells after treating them with various concentrations of silicon dioxide nanoparticles. Our results indicated that treatment with silicon dioxide nanoparticles induced decreases in U87 cell survival in a dose-related manner. The activities of citrate synthase and malate dehydrogenase in treated U87 cells were increased, possibly due to an energetic compensation in surviving cells. However, the expression of mitochondrial DNA-encoded cytochrome C oxidase subunit II and NADH dehydrogenase subunit 6 and the cell signaling protein ERK and phosphorylated ERK were altered in the treated U87 cells, suggesting that silicon dioxide nanoparticles induced disruption of mitochondrial DNA-encoded protein expression, leading to decreased mitochondrial energy production and decreased cell survival/proliferation signaling. Thus, our results strongly suggest that the cytotoxicity of silicon dioxide nanoparticles in human neural cells implicates altered mitochondrial function and cell survival/proliferation signaling.


Neurochemical Research | 2006

Signaling pathways mediating manganese-induced toxicity in human glioblastoma cells (u87).

Shilpa Puli; James C. K. Lai; Kristina L. Edgley; Christopher K. Daniels; Alok Bhushan

Although essential, manganese (Mn) intake in excess leads to neurotoxicity. Mn neurotoxicity induces impairment of energy metabolism and ultimately cell death. Nevertheless, the signaling mechanisms underlying Mn toxicity are unknown. Employing human glioblastoma (U87) cells, we investigated several signaling pathways (ones promoting cellular proliferation and invasion) underlying Mn toxicity. Mn-treatment of U87 cells induced a down-regulation of MAPK pathway but the AKT pathway was not markedly affected. Mn-treatment of these cells induced decreases in their levels of c-Jun and c-Fos transcription factors and extracellular matrix degrading enzymes like MMP-2, which are associated with glioblastoma invasiveness. Mn-treatment also induced apoptosis in U87 cells. Thus, our results indicate that other than inducing apoptosis in U87 cells, Mn exerts differential effects on several signaling pathways promoting glioblastoma proliferation and invasion. Consequently, Mn may have pathophysiological roles in inducing apoptosis and in blocking glioblastoma invasion. Our results may thus have therapeutic implications.


Leukemia Research | 2013

Interleukin-6 and JAK2/STAT3 signaling mediate the reversion of dexamethasone resistance after dexamethasone withdrawal in 7TD1 multiple myeloma cells.

Tuoen Liu; Zhiqiang Fei; Kalyan J. Gangavarapu; Senyo Agbenowu; Alok Bhushan; James C. K. Lai; Christopher K. Daniels; Shousong Cao

We previously reported the establishment and characteristics of a DXM-resistant cell line (7TD1-DXM) generated from the IL6-dependent mouse B cell hybridoma, 7TD1 cell line. After withdrawing DXM from 7TD1-DXM cells over 90 days, DXM significantly inhibited the cell growth and induced apoptosis in the cells (7TD1-WD) compared with 7TD1-DXM cells. Additionally, IL-6 reversed while IL-6 antibody and AG490 enhanced the effects of growth inhibition and apoptosis induced by DXM in 7TD1-WD cells. Our study demonstrates that 7TD1-DXM cells become resensitized to DXM after DXM withdrawal, and IL-6 and JAK2/STAT3 pathways may regulate the phenomenon.

Collaboration


Dive into the Alok Bhushan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aditi Jain

Idaho State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tuoen Liu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Vilas Desai

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge