Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alok Shankar is active.

Publication


Featured researches published by Alok Shankar.


Proceedings of SPIE | 2016

Scatter estimation and removal of anti-scatter grid-line artifacts from anthropomorphic head phantom images taken with a high resolution image detector

R. Rana; Amit Jain; Alok Shankar; Daniel R. Bednarek; Stephen Rudin

In radiography, one of the best methods to eliminate image-degrading scatter radiation is the use of anti-scatter grids. However, with high-resolution dynamic imaging detectors, stationary anti-scatter grids can leave grid-line shadows and moiré patterns on the image, depending upon the line density of the grid and the sampling frequency of the x-ray detector. Such artifacts degrade the image quality and may mask small but important details such as small vessels and interventional device features. Appearance of these artifacts becomes increasingly severe as the detector spatial resolution is improved. We have previously demonstrated that, to remove these artifacts by dividing out a reference grid image, one must first subtract the residual scatter that penetrates the grid; however, for objects with anatomic structure, scatter varies throughout the FOV and a spatially differing amount of scatter must be subtracted. In this study, a standard stationary Smit-Rontgen X-ray grid (line density - 70 lines/cm, grid ratio - 13:1) was used with a high-resolution CMOS detector, the Dexela 1207 (pixel size - 75 micron) to image anthropomorphic head phantoms. For a 15 x 15cm FOV, scatter profiles of the anthropomorphic head phantoms were estimated then iteratively modified to minimize the structured noise due to the varying grid-line artifacts across the FOV. Images of the anthropomorphic head phantoms taken with the grid, before and after the corrections, were compared demonstrating almost total elimination of the artifact over the full FOV. Hence, with proper computational tools, antiscatter grid artifacts can be corrected, even during dynamic sequences.


Medical Physics | 2015

SU-E-I-48: Noise Reduction with Over-Sampling for High Resolution Detectors Using a Spread Function Convolution Method

Alok Shankar; R Rana; Sarath Vijayan; S Setlur Nagesh; C Ionita; Daniel R. Bednarek; S Rudin

Purpose: A method to reduce noise resulting from the use of higher resolution x-ray detectors being developed to meet the demands of image guided vascular interventions is demonstrated. Methods: New direct detectors based on amorphous Se can have MTFs that remain high even at their Nyquist frequency. Since such detectors can be made with smaller pixels than may be required for even the high resolution requirements of many neurovascular applications, the resulting over-sampled images can be convolved with various functions to lower the noise. The effect on resolution can then be compared with a simple pixel binning. The general method proposed by Cunningham et al as the apodized-aperture pixel (AAP) design was compared with the Result for various simple 1D convolution spread functions with the effects on total noise and MTF compared to that of the binning case for a 25 μm aSe CMOS detector’s MTF published by the University of Waterloo group lead by KS Karim. Results: Assuming a white noise image, various convolution kernels resulted in similar reductions of total standard deviation. Detailed comparisons were made with the simple the 2x binning case. While reducing noise, the over-sampling convolution method using simple convolution low pass filters did not show advantage over 2x binning with regard to modifying the MTF; however, significant improvement was evidenced for the more complex sinc function used in the AAP design. Conclusion: As higher resolution detectors are being developed to meet the increasing demands for improved images to guide finer vascular interventions, use of super-sampled aSe detectors where resolution is maintained with reduced noise may well fill this requirement. Partial support from NIH Grant R01EB002873 and Toshiba Medical Systems Equipment Grant


Medical Imaging 2018: Physics of Medical Imaging | 2018

Spectroscopy with a CdTe-based photon-counting imaging detector (PCD) having charge sharing correction capability

Alok Shankar; Jordan M. Krebs; Daniel R. Bednarek; Stephen Rudin

The spectroscopic capabilities of a newly upgraded version of a prototype imaging photon counting detector (PCD) was investigated. The XCounter Actaeon has four acquisition modes in which signal processing is varied including one mode having a charge sharing correction so that neighboring pixels that share a detected event will not be erroneously counted twice, hence it is designated the Anti-Coincidence Circuit On or ACC On mode. Since this CdTe-based direct conversion PCD has 100 μm pixels, such charge sharing may frequently occur for typical medical x-ray energies. Each pixel of this PCD has two scalers and two energy discriminators that enable counting without instrumentation noise of events above each threshold level; hence, a spectrum can be obtained by sequentially moving the thresholds of both discriminators. It became evident from the spectra for the various acquisition modes that only those obtained with the charge sharing correction enabled, compared favorably with theoretically predicted spectra. After verifying the energy calibration using the mono-energetic emissions from an Am-241 source, spectra at various kVps from a standard medical x-ray generator were obtained. The spectra generated by ACC On mode for 70 kVp and 110 kVp were the closest match to the theoretical spectra generated by SpekCal. For dual energy applications, ACC On mode with charge sharing correction circuitry would be the best choice among various acquisition modes. Also investigated was the dual energy imaging capability of the Actaeon PCD with ACC On mode to separate Aluminum and Iodine while imaging an artery stenosis phantom.


Medical Imaging 2018: Physics of Medical Imaging | 2018

Evaluation of a new photon-counting imaging detector (PCD) with various acquisition modes

Alok Shankar; Jordan M. Krebs; Daniel R. Bednarek; Stephen Rudin

The prospect of improved low noise, high speed, and dual-energy imaging that may be associated with the use of photon-counting imaging detectors (PCD) has motivated this evaluation of a newly upgraded version of a prototype PCD. The XCounter Actaeon was evaluated in its four acquisition modes each based upon varying signal processing firmware including a mode with charge sharing correction that enables neighboring pixels that share the energy from one incident x-ray photon detection to be counted only once at the proper summed energy in the pixel with the largest charge deposition. Since this PCD is a CdTe-based direct detector with 100 μm pixels, such charge sharing for typical medical x-ray energy photons may occur frequently and must be corrected to achieve more accurate counts. This charge sharing correction is achieved with an Anti-Coincidence Circuit (ACC) which prevents double pixel counting from one event as well as prevents counting from either event if they are below a preset threshold. Various physical parameters of the PCD were evaluated including linearity, sensitivity, pulse pile-up effects, dark noise, spatial resolution, noise power spectrum, and detective quantum efficiency.


Medical Imaging 2018: Physics of Medical Imaging | 2018

Initial investigations of a special high-definition (Hi-Def) zoom capability in a new detector system for neuro-interventional procedures

Swetadri Vasan Setlur Nagesh; Alok Shankar; Jordan M. Krebs; Jessica Hinaman; Daniel R. Bednarek; Stephen Rudin

Real-time visualization of fine details ranging to 100 um or less in neuro-vascular imaging guided interventions is important. A separate high-resolution detector mounted on a standard flat panel detector (FPD) was previously reported. This device had to be rotated mechanically into position over the FPD for high resolution imaging. Now, the new detector reported here has a high definition (Hi-Def) zoom capability along with the FPD built into one unified housing. The new detector enables rapid switching, by the operator between Hi-Def and FPD modes. Standard physical metrics comparing the new Hi-Def modes with those of the FPD are reported, demonstrating improved imaging resolution and noise capability at patient doses similar to those used for the FPD. Semi-quantitative subjective studies involving qualitative clinician feedback on images of interventional devices such as a Pipeline Embolization Device (PED) acquired in both Hi-Def and FPD modes are presented. The PED is deployed in a patient specific 3D printed neuro-vascular phantom embedded inside realistic bone and with tissue attenuating material. Field-of-view (FOV), exposure and magnification were kept constant for FPD and Hi-Def modes. Static image comparisons of the same view of the PED within the phantom were rated by expert interventionalists who chose from the following ratings: Similar, Better, or Superior. Generally, the Hi-Def zoomed images were much preferred over the FPD, indicating the potential to improve endovascular procedures and hence outcomes using such a Hi-Def feature.


Medical Imaging 2018: Physics of Medical Imaging | 2018

Gantry rotational motion-induced blur in cone-beam computed tomography

Jordan M. Krebs; Alok Shankar; Daniel R. Bednarek; Stephen Rudin

As neuro-endovascular image-guided interventions (EIGIs) make use of higher resolution detectors, gantry rotational motion-induced blur becomes more noticeable in acquired projections as well as reconstructed images by reducing the visibility of vascular and device features whose visualization could be critical in the treatment of vascular pathology. Motion-induced blur in projections views is a function of an object’s position in the field-of-view (FOV), gantry rotational speed, and frame capture or exposure time. In this work different frame rates were used to investigate the effects of blurring from individual projections on the reconstructed image. To test the effects of these parameters on reconstructed images, a regular pattern phantom of small objects was simulated and projection views were generated at various different frame rates for a given simulated rotational velocity. The reconstruction was made using a linear interpolation of filtered backprojections. Images reconstructed from lower frame rates showed significant blurring in the azimuthal direction, increasingly worse towards the periphery of the image. However, those reconstructed from higher frame rates showed significantly less blur throughout the entire FOV. While lower frame rates could be used with slower gantry speeds this would increase the risk of voluntary or involuntary patient motion contributing to blur over the entire FOV. A high frame rate used with high gantry speeds could reliable provide images without gantry-motion blur while reducing the risk of patient-motion blur. Frame rates exceeding 2000 fps available with photon counting detectors such as the X-counter Actaeon are available.


Proceedings of SPIE | 2017

A CMOS-based high-resolution fluoroscope (HRF) detector prototype with 49.5 µm pixels for use in endovascular image guided interventions (EIGI)

M Russ; Alok Shankar; S Setlur Nagesh; Ciprian N. Ionita; Daniel R. Bednarek; S Rudin

X-ray detectors to meet the high-resolution requirements for endovascular image-guided interventions (EIGIs) are being developed and evaluated. A new 49.5-micron pixel prototype detector is being investigated and compared to the current suite of high-resolution fluoroscopic (HRF) detectors. This detector featuring a 300-micron thick CsI(Tl) scintillator, and low electronic noise CMOS readout is designated the HRF- CMOS50. To compare the abilities of this detector with other existing high resolution detectors, a standard performance metric analysis was applied, including the determination of the modulation transfer function (MTF), noise power spectra (NPS), noise equivalent quanta (NEQ), and detective quantum efficiency (DQE) for a range of energies and exposure levels. The advantage of the smaller pixel size and reduced blurring due to the thin phosphor was exemplified when the MTF of the HRF-CMOS50 was compared to the other high resolution detectors, which utilize larger pixels, other optical designs or thicker scintillators. However, the thinner scintillator has the disadvantage of a lower quantum detective efficiency (QDE) for higher diagnostic x-ray energies. The performance of the detector as part of an imaging chain was examined by employing the generalized metrics GMTF, GNEQ, and GDQE, taking standard focal spot size and clinical imaging parameters into consideration. As expected, the disparaging effects of focal spot unsharpness, exacerbated by increasing magnification, degraded the higher-frequency performance of the HRF-CMOS50, while increasing scatter fraction diminished low-frequency performance. Nevertheless, the HRF-CMOS50 brings improved resolution capabilities for EIGIs, but would require increased sensitivity and dynamic range for future clinical application.


Proceedings of SPIE | 2017

Focal spot size reduction using asymmetric collimation to enable reduced anode angles with a conventional angiographic x-ray tube for use with high resolution detectors

M Russ; Alok Shankar; S Setlur Nagesh; Ciprian N. Ionita; Daniel R. Bednarek; Stephen Rudin

The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.


Proceedings of SPIE | 2017

Skin dose mapping for non-uniform x-ray fields using a backscatter point spread function

Thomas G. Flohr; Joseph Y. Lo; Taly Gilat Schmidt; Sarath Vijayan; Zhenyu Xiong; Alok Shankar; Stephen Rudin; Daniel R. Bednarek

Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the xray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF’s were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF’s for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the nonuniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.


Proceedings of SPIE | 2017

Comparison of high resolution x-ray detectors with conventional FPDs using experimental MTFs and apodized aperture pixel design for reduced aliasing

Alok Shankar; M Russ; Sarath Vijayan; Daniel R. Bednarek; Stephen Rudin

Apodized Aperture Pixel (AAP) design, proposed by Ismailova et.al, is an alternative to the conventional pixel design. The advantages of AAP processing with a sinc filter in comparison with using other filters include non-degradation of MTF values and elimination of signal and noise aliasing, resulting in an increased performance at higher frequencies, approaching the Nyquist frequency. If high resolution small field-of-view (FOV) detectors with small pixels used during critical stages of Endovascular Image Guided Interventions (EIGIs) could also be extended to cover a full field-of-view typical of flat panel detectors (FPDs) and made to have larger effective pixels, then methods must be used to preserve the MTF over the frequency range up to the Nyquist frequency of the FPD while minimizing aliasing. In this work, we convolve the experimentally measured MTFs of an Microangiographic Fluoroscope (MAF) detector, (the MAF-CCD with 35μm pixels) and a High Resolution Fluoroscope (HRF) detector (HRF-CMOS50 with 49.5μm pixels) with the AAP filter and show the superiority of the results compared to MTFs resulting from moving average pixel binning and to the MTF of a standard FPD. The effect of using AAP is also shown in the spatial domain, when used to image an infinitely small point object. For detectors in neurovascular interventions, where high resolution is the priority during critical parts of the intervention, but full FOV with larger pixels are needed during less critical parts, AAP design provides an alternative to simple pixel binning while effectively eliminating signal and noise aliasing yet allowing the small FOV high resolution imaging to be maintained during critical parts of the EIGI.

Collaboration


Dive into the Alok Shankar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M Russ

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar

S Rudin

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit Jain

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge