Alp Can
Ankara University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alp Can.
Stem Cells | 2007
Sercin Karahuseyinoglu; Ozgur Cinar; Emine Kilic; Fadil Kara; Guvem Gumus Akay; Duygu Ozel Demiralp; Ajlan Tükün; Duygu Uckan; Alp Can
Cells in the umbilical cord stroma have gained attention in recent years; however, differentiation to certain lineages in humans has been demonstrated in few studies. Unlike bone marrow MSCs, human umbilical cord stroma cells (HUCSCs) are far from being well characterized. This study attempts to describe proliferation, structural, and differentiation properties of these cells to account for their exceptional nature in many aspects. Cellular dynamics, cellular structure, and the degree of transformations during expansion and differentiation into mesenchymal and neuronal lineages were examined in vitro over a 10‐month period. Comparisons with human bone marrow MSCs regarding differentiation were performed. HUCSCs in culture revealed two distinct cell populations, type 1 and type 2 cells, that possessed differential vimentin and cytokeratin filaments. Corresponding cells were encountered in cord sections displaying region‐specific localization. α‐Smooth muscle actin and desmin filaments, which were evident in cord sections, diminished through passages. No difference was noted regarding type 1 and type 2 cells in differentiation to chondrogenic, adipogenic, and osteogenic lineages, whereas a preferential differentiation was noted in neuronal lineage. Relative success was achieved by production of chondrocytic spheres and osteogenic monolayers, whereas adipocytes were immature compared with bone marrow MSCs. The presence of neuronal markers suggests that they transform into a certain state of maturity under neurogenic induction. Conclusively, HUCSCs retain their original phenotype in culture without spontaneous differentiation, have a limited lifespan, and bear multipotent stem cell characteristics. Given these characteristics, they may be generally considered progenitor cells if manipulated under appropriate conditions and deserve further study to be potentially used in cell‐based therapies.
Nature Medicine | 2009
Muge Yemisci; Yasemin Gursoy-Ozdemir; Atay Vural; Alp Can; Kamil Topalkara; Turgay Dalkara
Here we show that ischemia induces sustained contraction of pericytes on microvessels in the intact mouse brain. Pericytes remain contracted despite successful reopening of the middle cerebral artery after 2 h of ischemia. Pericyte contraction causes capillary constriction and obstructs erythrocyte flow. Suppression of oxidative-nitrative stress relieves pericyte contraction, reduces erythrocyte entrapment and restores microvascular patency; hence, tissue survival improves. In contrast, peroxynitrite application causes pericyte contraction. We also show that the microvessel wall is the major source of oxygen and nitrogen radicals causing ischemia and reperfusion–induced microvascular dysfunction. These findings point to a major but previously not recognized pathophysiological mechanism; ischemia and reperfusion-induced injury to pericytes may impair microcirculatory reflow and negatively affect survival by limiting substrate and drug delivery to tissue already under metabolic stress, despite recanalization of an occluded artery. Agents that can restore pericyte dysfunction and microvascular patency may increase the success of thrombolytic and neuroprotective treatments.
Stroke | 2004
Yasemin Gursoy-Ozdemir; Alp Can; Turgay Dalkara
Background and Purpose— Use of thrombolysis in stroke is limited by a short therapeutic window because delayed reperfusion may cause brain hemorrhage and edema. Available evidence suggests a role for superoxide, NO, and peroxynitrite in reperfusion-induced injury. However, depending on their cellular origin and interactions between them, these molecules may exert protective or deleterious actions, neither of which is characterized in the intact brain. Methods— Using fluorescent probes, we determined superoxide and peroxynitrite formation within neurons, astrocytes, and endothelium, and the association between oxidative/nitrative stress and vascular injury in mice brains subjected to 2-hour middle cerebral artery occlusion and 3 or 5 hours of reperfusion. Results— Both signals were colocalized, suggesting that the main source of peroxynitrite in the reperfused brain was a reaction between superoxide and NO. Superoxide and peroxynitrite formation was particularly intense in microvessels and astrocytic end-feet surrounding them, and overlapped with dense mitochondrial labeling. Sites of oxidative/nitrative stress on microvessels were colocalized with markers of vascular injury such as Evans blue (EB) leakage and matrix metalloproteinase-9 (MMP-9) expression, suggesting an association between peroxynitrite and microvascular injury. Supporting this idea, partial inhibition of endothelial NO synthesis at reperfusion with a low dose of L-nitroarginine (1 mg/kg IP) reduced 3-nitrotyrosine formation in microvessels and EB extravasation. Conclusion— During reperfusion, intense superoxide, NO, and peroxynitrite formation on microvessels and surrounding end-feet may lead to cerebral hemorrhage and edema by disrupting microvascular integrity. Combination of thrombolysis with agents diminishing oxidative/nitrative stress may reduce reperfusion-induced injury and extend the therapeutic window for thrombolysis.
Stroke | 2004
Isin Unal-Cevik; Münire Kilinc; Alp Can; Yasemin Gursoy-Ozdemir; Turgay Dalkara
Background and Purpose— Both necrotic and apoptotic cell death mechanisms are activated after cerebral ischemia. However, whether they are concomitantly active in the same cell or in discrete cell populations is not known. Methods— We investigated activation of both pathways at the cellular level in mice brains subjected to transient or permanent focal ischemia. Results— Four hours after ischemia, diffuse cathepsin-B spillage into cytoplasm, suggesting lysosomal leakage, was observed within neurons immunoreactive for the active form of caspase-3 (p20). Ischemic neurons with a leaky plasma membrane (positive for propidium iodide) were colabeled with caspase-cleaved actin fragment and exhibited TUNEL-positive nuclei having apoptotic morphology. At 72 hours, up to 27% of cells with caspase activity displayed morphological features suggestive of secondary necrosis. Conclusions— These data, demonstrating an early and concurrent increase in caspase-3 and cathepsin-B activities followed by appearance of caspase-cleavage products, DNA fragmentation, and membrane disintegration, suggest that subroutines of necrotic and apoptotic cell death are concomitantly activated in ischemic neurons and that the dominant cell death phenotype is determined by the relative speed of each process.
Stroke | 2002
Hayrunnisa Bolay; Yasemin Gursoy-Ozdemir; Yildirim Sara; Rustu Onur; Alp Can; Turgay Dalkara
Background and Purpose— Synaptic transmission is highly vulnerable to metabolic perturbations. However, the long-term consequences of transient metabolic perturbations on synapses are not clear. We studied the long-lasting changes in synaptic transmission and phosphorylation of presynaptic proteins in penumbral cortical neurons after transient moderate ischemia. Methods— Rats were subjected to 1 hour of middle cerebral artery occlusion. After reperfusion, electric activity of neurons in the peri-infarct region was recorded intracellularly and extracellularly in situ. Phosphorylation of synapsin-I and tyrosine residues was studied by immunohistochemistry. Results— Neurons in the penumbra displayed no postsynaptic potentials 1 to 3 hours after recirculation. However, these cells were able to generate action potentials and were responsive to glutamate, suggesting that postsynaptic excitability was preserved but the synaptic transmission was blocked because of a presynaptic defect. The synaptic transmission was still depressed 24 hours after recirculation in neurons in the peri-infarct area that survived ischemia. The amount of immunoreactive synapsin-I, synaptophysin, and synaptotagmin was not appreciably changed for 72 hours after reperfusion. However, phosphorylation of synapsin-l was significantly decreased, whereas phosphotyrosine immunoreactivity was increased, suggesting a selective defect in synapsin-I phosphorylation. Conclusions— These data demonstrate that synaptic transmission may be permanently impaired after transient moderate brain injury. Since postsynaptic excitability is preserved, the transmission failure is likely to be caused by presynaptic mechanisms, one of which may be impaired phosphorylation of presynaptic proteins.
Methods of Molecular Biology | 2011
Alp Can; Deniz Balci
As the collection and isolation of human bone marrow-derived mesenchymal stem cells (MSCs) require invasive and often undesirable procurement procedures, investigators have begun to seek alternative sources of human MSC including the umbilical cord stroma. Here we describe the noninvasive isolation, culture, and basic characterization of human umbilical cord stroma-derived mesenchymal stem cells (hUCS-MSCs). Although some technical and observational variations exist between laboratories, there has been a relatively common consensus regarding the immunological and functional characteristics of hUCS-MSCs. Successful in vitro and in vivo differentiation to several lineages makes these cells an invaluable stem cell source, deserving further testing as a cellular therapy or other applications in regenerative medicine. Therefore, the isolation and culture of hUCS-MSCs still need better clarification to ultimately build an optimal standard procedure among laboratories, tissue banks, and clinics.
Brain Pathology | 2009
Gunfer Gurer; Yasemin Gursoy-Ozdemir; Esra Erdemli; Alp Can; Turgay Dalkara
Several recent reports proposed that astrocyte death might precede neuronal demise after focal ischemia, contrary to the conventional view that astrocytes are more resistant to injury than neurons. Interestingly, there are findings supporting each of these opposing views. To clarify these controversies, we assessed astrocyte viability after 2‐h middle cerebral artery occlusion in mice. In contrast to neighboring neurons, astrocytes were alive and contained glycogen across the ischemic area 6 h after reperfusion, and at the expanding outer border of the infarct at later time points. These glycogen‐positive astrocytes had intact plasma membranes. Astrocytes lost plasmalemma integrity much later than neurons: 19 ± 22 (mean ± standard deviation), 58 ± 14 and 69 ± 3% of astrocytes in the perifocal region became permeable to propidium iodide (PI) at 6, 24, 72 h after ischemia, respectively, in contrast to 81 ± 2, 96 ± 3, 97 ± 2% of neurons. Although more astrocytes in the cortical and subcortical core regions were PI‐positive, their numbers were considerably less than those of neurons. Lysosomal rupture (monitored by deoxyribonuclease II immunoreactivity) followed a similar time course. Cytochrome‐c immunohistochemistry showed that astrocytes maintained mitochondrial integrity longer than neurons. EM confirmed that astrocyte ultrastructure including mitochondria and lysosomes disintegrated much later than that of neurons. We also found that astrocytes died by a delayed necrosis without significantly activating apoptotic mechanisms although they rapidly swelled at the onset of ischemia.
Neurobiology of Disease | 2010
Münire Kilinc; Yasemin Gursoy-Ozdemir; Gunfer Gurer; Sefik Evren Erdener; Esra Erdemli; Alp Can; Turgay Dalkara
Ischemic cell death is a complex process and the initial distinction between apoptosis and necrosis appears to be an oversimplification. We previously reported that in ischemic neurons with disrupted plasmalemma, apoptotic mechanisms were also active. In the present study, we investigated cellular co-localization of another necrotic feature, lysosomal rupture, with apoptotic mechanisms in the mouse brain and assessed the potential interactions between cysteine proteases. The lysosomal enzymes were spilled into the cytoplasm 1-4h after ischemia/reperfusion, suggesting that lysosomal membrane integrity was rapidly lost, as occurs in necrosis. The same neurons also exhibited caspase-3 and Bid cleavage, and cytochrome-c release. Caspase-3 activity preceded cathepsin-B leakage in most neurons, and declined by 12h, while lysosomal leakage continued to increase. Concurrent inhibition of cathepsin-B and caspase-3 provided significantly better neuroprotection than obtained with separate use of each inhibitor. These data suggest that necrotic and apoptotic mechanisms may act both in concert as well as independently within the same cell beginning at the onset of ischemia to ensure the demise of damaged neurons. Therefore, combined inhibition of cysteine proteases may abrogate potential shifts between alternative death pathways and improve the success of stroke treatments.
Transfusion and Apheresis Science | 2008
Alp Can
A highly specialized, anatomically-defined tissue microenvironment localized in bone-marrow is considered as haematopoietic stem cell (HSC) niche where several groups of cells and extracellular matrix elements interact with HSCs to promote/inhibit their self renewal, differentiation and migration all of which are precisely regulated by several molecular mechanisms. In this brief review, recent progress has been documented with special emphasis on the structural-functional relationship between HSCs and surrounding cells. Some of the signalling pathways that play major roles in self-renewing and differentiation were highlighted in parallel to the current progress in HSC niches that are also considered as the critical new targets for the treatment of certain diseases.
Current Stem Cell Research & Therapy | 2013
Deniz Balci; Alp Can
Human umbilical cord stroma-derived mesenchymal stem cells (hUCS-MSCs) are considered as a remarkable and promising stem cell source to be potentially used in cellular therapies. While no graft rejection has been reported in the recipient organism even in xeno-transplantation studies, attenuate tumor cell growth and gene transfers have been experimentally shown. In this study, we have demonstrated a reliable, reproducible and efficient cryopreservation method of hUCS-MSCs resulting in one of the highest cell survival rates reported so far. Conventional, computer-controlled multistep slow freezing (MSSF), and vitrification methods were comparatively tested using cell permeable [dimethylsulfoxide (DMSO), ethylene glycol] and impermeable [trehalose, sucrose, hydroxyethyl starch (HES), human serum albumin] cryoprotectant agents (CPAs). After determining the ice nucleation point for each solution, latent heat evolution was suppressed during freezing, followed by a cooling process to -40°C at 1°C/min or 0.3°C/min. The efficiency of the cryopreservation techniques used was determined by cell viability and proliferation assays, the expression of cell surface markers, cytoskeletal proteins and chromosome alignments. The cell survival rate was found to be highest (87 ± 5%) by MSSF with sucrose (0.1 M) +DMSO (10%) at 1°C/min freezing rate. In this group, no significant difference was noted before and after the cryopreservation in cell morphology, cytokeratin, vimentin, and α-smooth muscle actin profiles and the expressions of CD105, CD90, CD73, CD29 and HLA-DR. Second highest cell survival ratio (85 ± 6%) was obtained in DMSO (10%) alone at 1°C/min freezing rate. Interestingly, poor (18 ± 15%) cell survival rates were obtained after vitrification. Cumulatively, results indicated that MSSF favors the other freezing protocols with an addition of sucrose or DMSO alone depending on the freezing rate used.