Alshakim Nelson
IBM
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alshakim Nelson.
Journal of the American Chemical Society | 2010
Daniel P. Sanders; Kazuki Fukushima; Daniel J. Coady; Alshakim Nelson; Masaki Fujiwara; Manabu Yasumoto; James L. Hedrick
An improved two-step synthetic route to functionalized cyclic carbonate monomers that features a novel cyclic carbonate intermediate with an active pentafluorophenyl ester group (MTC-OPhF(5)) has been developed. The versatile pentafluorophenyl ester intermediate can be synthesized on the gram to kilogram scale in one high-yielding step and is easy to store and handle on the benchtop. The active pentafluorophenyl ester of MTC-OPhF(5) is amenable to further substitution with suitable nucleophiles such as alcohols and amines to generate functionalized cyclic carbonates in high yields. The substitution reaction is tolerant of a wide variety of functionalities, including various hydrophobic and hydrophilic groups, reactive functionalities (via thiol-ene click chemistry or alkyl halides), and protected acids, alcohols, thiols, and amines. In view of the ever-increasing need for biodegradable and biocompatible polymers, this new methodology provides a simple and versatile platform for the synthesis of new and innovative materials.
Biomaterials | 2010
Sung Ho Kim; Jeremy P. K. Tan; Kazuki Fukushima; John Colson; Chuan Yang; Alshakim Nelson; Yi-Yan Yang; James L. Hedrick
Ring-opening polymerization (ROP) of functionalized cyclic carbonates derived from 2,2-bis(methylol)propionic acid (bis-MPA) allows for incorporation of H-bonding urea-functional groups into block copolymers with a potential application of supramolecular drug-delivery systems. The strong H-bonding functionalities of poly(ethylene glycol)-block-poly(ethyl-random-urea carbonate) (PEG-P(E(1-x)-U(x))C) block copolymers not only lowered critical micelles concentration (cmc) of the block copolymer (to 1/4x) in aqueous environment compared to conventional PEG-poly(trimethylene carbonate) (PEG-PTMC) block copolymer without the non-covalent stabilization, but also improved kinetic stability of micelles and Dox-loaded micelles in the presence of a destabilizing agent. It was observed that the incorporation of anticancer drug doxorubicin affected the micellization process of block copolymers in water and caused a sudden increase in sizes of drug-loaded micelles above 200 nm. This phenomenon that can be a significant drawback in drug delivery applications was considerably mitigated in urea-bearing block copolymer/Dox micelles with simultaneously accompanying a significant improvement in drug loading. In vitro drug release profile showed that the increase in urea content led to a slight decrease in Dox release rate. Block copolymer did not have any significant cytotoxicity against HEK293 and HepG2 cells up to 400 mg/L. Importantly, Dox-loaded micelles exerted cytotoxic effect against HepG2 cells.
Biomaterials | 2010
Fabian Suriano; Russell C. Pratt; Jeremy P. K. Tan; Nikken Wiradharma; Alshakim Nelson; Yi-Yan Yang; Philippe Dubois; James L. Hedrick
Polymers bearing pendant carbohydrates have a variety of biomedical applications especially in the area of targeted drug delivery. Here we report the synthesis of a family of amphiphilic block glycopolymers containing d glucose, d galactose and d mannose via metal-free organocatalyzed ring-opening polymerization of functional cyclic carbonates generating narrowly dispersed products of controlled molecular weight and end-group fidelity, and their application in drug delivery. These glycopolymers self-assemble into micelles having a high density of sugar molecules in the shell, a size less than 100 nm with narrow size distribution even after drug loading, and little cytotoxicity, which are important for drug delivery. Using galactose-containing micelles as an example, we demonstrate their strong targeting ability towards ASGP-R positive HepG2 liver cancer cells in comparison with ASGP-R negative HEK293 cells although the galactose is attached to the carbonate monomer at 6-position. The enhanced uptake of DOX-loaded galactose-containing micelles by HepG2 cells significantly increases cytotoxicity of DOX as compared to HEK293. This new family of amphiphilic block glycopolymers has great potential as carriers for targeted drug delivery.
Angewandte Chemie | 2009
Olivier Coulembier; Daniel P. Sanders; Alshakim Nelson; Andrew N. Hollenbeck; Hans W. Horn; Julia E. Rice; Masaki Fujiwara; Philippe Dubois; James L. Hedrick
Recognize this! A hydrogen-bonding motif based on hexafluorinated alcohol derivatives (see picture; O red, F yellow) activates electrophilic substrates. The catalytic activity of the hydrogen-bonded systems was demonstrated for the ring-opening polymerization of a variety of strained heterocycles. Narrowly dispersed polymers with predictable molecular weights were obtained with end-group fidelity.
Nano Letters | 2010
Qiu Dai; David Berman; Kumar Virwani; Jane Frommer; Pierre-Olivier Jubert; Michelle Lam; Teya Topuria; Wayne Isami Imaino; Alshakim Nelson
A self-assembled magnetic recording medium was created using colloidal ferrimagnetic building blocks. Monodisperse cobalt ferrite nanoparticles (CoFe(2)O(4)) were synthesized using solution-based methods and then stabilized in solution using the amphiphilic diblock copolymer, poly(acrylic acid)-b-poly(styrene) (PAA-PS). The acid groups of the acrylate block bound the polymer to the nanoparticle surface via multivalent interactions, while the styrene block afforded the magnetic nanoparticle--polymer complex solubility in organic solvents. Moreover, the diblock copolymer improved the colloidal stability of the ferrimagnetic CoFe(2)O(4) nanoparticles by reducing the strong interparticle magnetic interactions, which typically caused the ferrimagnetic nanoparticles to irreversibly aggregate. The nanoparticle--polymer complex was spin-coated onto a silicon substrate to afford self-organized thin film arrays, with the interparticle spacing determined by the molecular weight of the diblock copolymer. The thin film composite was also exposed to an external magnetic field while simultaneously heated above the glass transition temperature of poly(styrene) to allow the nanoparticles to physically rotate to align their easy axes with the direction of the magnetic field. In order to demonstrate that this self-assembled ferrimagnet--polymer composite was suitable as a magnetic recording media, read/write cycles were demonstrated using a contact magnetic tester. This work provides a simple route to synthesizing stabilized ferrimagnetic nanocrystals that are suitable for developing magnetic recording media.
Nature Materials | 2008
Alshakim Nelson
Materials that respond to their external environment require creative molecular design — much inspiration comes from the natural world.
Nano Letters | 2014
Liheng Wu; Pierre-Olivier Jubert; David Berman; Wayne Isami Imaino; Alshakim Nelson; Huiyuan Zhu; Sen Zhang; Shouheng Sun
We report a facile synthesis of monodisperse ferrimagnetic Co(x)Fe(3-x)O4 nanocubes (NCs) through thermal decomposition of Fe(acac)3 and Co(acac)2 (acac = acetylacetonate) in the presence of oleic acid and sodium oleate. The sizes of the NCs are tuned from 10 to 60 nm, and their composition is optimized at x = 0.6 to show strong ferrimagnetism with the 20 nm Co0.6Fe2.4O4 NCs showing a room temperature Hc of 1930 Oe. The ferrimagnetic NCs are self-assembled at the water-air interface into a large-area (in square centimeter) monolayer array with a high packing density and (100) texture. The 20 nm NC array can be recorded at linear densities ranging from 254 to 31 kfci (thousand flux changes per inch). The work demonstrates the great potential of solution-phase synthesis and self-assembly of magnetic array for magnetic recording applications.
Langmuir | 2010
Qiu Dai; Michelle Lam; Sally Swanson; Rui-Hui Rachel Yu; Delia J. Milliron; Teya Topuria; Pierre-Olivier Jubert; Alshakim Nelson
Ferro- and ferrimagnetic nanoparticles are difficult to manipulate in solution as a consequence of the formation of magnetically induced nanoparticle aggregates, which hamper the utility of these particles for applications ranging from data storage to bionanotechnology. Nonmagnetic shells that encapsulate these magnetic particles can reduce the interparticle magnetic interactions and improve the dispersibility of the nanoparticles in solution. A route to create uniform silica shells around individual cobalt ferrite nanoparticles--which uses poly(acrylic acid) to bind to the nanoparticle surface and inhibit nanoparticle aggregation prior to the addition of a silica precursor--was developed. In the absence of the poly(acrylic acid) the cobalt ferrite nanoparticles irreversibly aggregated during the silica shell formation. The thickness of the silica shell around the core-shell nanoparticles could be controlled in order to tune the interparticle magnetic coupling as well as inhibit magnetically induced nanoparticle aggregation. These ferrimagnetic core-silica shell structures form stable dispersion in polar solvents such as EtOH and water, which is critical for enabling technologies that require the assembly or derivatization of ferrimagnetic particles in solution.
ACS Nano | 2012
Kazuki Fukushima; Jeremy P. K. Tan; Peter A. Korevaar; Yi Yan Yang; Jed W. Pitera; Alshakim Nelson; Hareem Maune; Daniel J. Coady; Jane Frommer; Amanda C. Engler; Yuan Huang; Kaijin Xu; Zhongkang Ji; Yuan Qiao; Weimin Fan; Lanjuan Li; Nikken Wiradharma; E. W. Meijer; James L. Hedrick
With the increased prevalence of antibiotic-resistant infections, there is an urgent need for innovative antimicrobial treatments. One such area being actively explored is the use of self-assembling cationic polymers. This relatively new class of materials was inspired by biologically pervasive cationic host defense peptides. The antimicrobial action of both the synthetic polymers and naturally occurring peptides is believed to be complemented by their three-dimensional structure. In an effort to evaluate shape effects on antimicrobial materials, triblock polymers were polymerized from an assembly directing terephthalamide-bisurea core. Simple changes to this core, such as the addition of a methylene spacer, served to direct self-assembly into distinct morphologies-spheres and rods. Computational modeling also demonstrated how subtle core changes could directly alter urea stacking motifs manifesting in unique multidirectional hydrogen-bond networks despite the vast majority of material consisting of poly(lactide) (interior block) and cationic polycarbonates (exterior block). Upon testing the spherical and rod-like morphologies for antimicrobial properties, it was found that both possessed broad-spectrum activity (Gram-negative and Gram-positive bacteria as well as fungi) with minimal hemolysis, although only the rod-like assemblies were effective against Candida albicans.
Macromolecular Rapid Communications | 2010
Jeremy P. K. Tan; Sung Ho Kim; Kazuki Fukushima; Daniel J. Coady; Alshakim Nelson; Yi Yan Yang; James L. Hedrick
Polymeric micelles comprising a hydrogen-bonding core were formed from block copolymers with pendant urea groups and explored as drug delivery vehicles. The amphiphilic block copolymers were synthesized by organocatalytic ring opening polymerization (ROP) of urea-functionalized cyclic carbonates from a poly(ethylene glycol) macroinitiator. The urea functionality was incorporated because its ability to increase the hydrophobic cores affinity toward polar organic compounds through intermolecular hydrogen bonding. Doxorubicin (DOX), a lipophilic anticancer drug with hydrogen-bonding functionalities, was systematically incorporated into the micelles hydrophobic interior via hydrogen bonding to the functionalized monomers. Micelles employing urea groups were found to more efficiently interact with DOX thus allowing increased drug loading capacity while maintaining a desirable micellular size. More importantly, while DOX-loaded micelles were shown to kill HepG2 human liver carcinoma cell lines efficiently, all of the polymers were non-cytotoxic.