Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Altaf Hussain Lahori is active.

Publication


Featured researches published by Altaf Hussain Lahori.


Ecotoxicology and Environmental Safety | 2016

Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review

Amanullah Mahar; Ping Wang; Amjad Ali; Mukesh Kumar Awasthi; Altaf Hussain Lahori; Quan Wang; Ronghua Li; Zengqiang Zhang

Mining operations, industrial production and domestic and agricultural use of metal and metal containing compound have resulted in the release of toxic metals into the environment. Metal pollution has serious implications for the human health and the environment. Few heavy metals are toxic and lethal in trace concentrations and can be teratogenic, mutagenic, endocrine disruptors while others can cause behavioral and neurological disorders among infants and children. Therefore, remediation of heavy metals contaminated soil could be the only effective option to reduce the negative effects on ecosystem health. Thus, keeping in view the above facts, an attempt has been made in this article to review the current status, challenges and opportunities in the phytoremediation for remediating heavy metals from contaminated soils. The prime focus is given to phytoextraction and phytostabilization as the most promising and alternative methods for soil reclamation.


Science of The Total Environment | 2016

Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios

Ronghua Li; Jim J. Wang; Baoyue Zhou; Mukesh Kumar Awasthi; Amjad Ali; Zengqiang Zhang; Lewis A. Gaston; Altaf Hussain Lahori; Amanullah Mahar

Mg/Al ratio plays a significant role for anion adsorption by Mg/Al-layered double hydroxides (Mg/Al-LDHs) modified biochar. In this study, Mg/Al-LDHs biochar with different Mg/Al ratios (2, 3, 4) were prepared by co-precipitation for phosphate removal from aqueous solution. Factors on phosphate adsorption including Mg/Al ratio, pH, and the presence of other inorganic anions were investigated through batch experiments. Increasing Mg/Al ratio in the Mg/Al-LDHs biochar composites generally enhanced phosphate adsorption with Langmuir adsorption maximum calculated at 81.83mg phosphorous (P) per gram of 4:1Mg/Al-LDHs biochar at pH3.0. The adsorption process was best described by the pseudo-second-order kinetic model. Solution pH had greater effects on the phosphate adsorption by Mg/Al LDHs biochar composites with lower Mg/Al ratios. The presence of other inorganic anions decreased the phosphate adsorption efficiency in the order of F(-) > SO4(2-) > NO2(-) >Cl(-). Phosphate adsorption mechanism involves ion exchange, electrostatic attraction and surface inner-sphere complex formation. Overall, Mg/Al-LDHs biochar composites offer a potential alternative of carbon-based adsorbent for phosphate removal from aqueous solution.


Bioresource Technology | 2016

Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting

Mukesh Kumar Awasthi; Quan Wang; Hui Huang; Xiuna Ren; Altaf Hussain Lahori; Amanullah Mahar; Amjad Ali; Feng Shen; Ronghua Li; Zengqiang Zhang

This study aimed to evaluate the role of different amount of zeolite with low dosage of lime amendment on the greenhouse gas (GHGs) emission and maturity during the dewatered fresh sewage sludge (DFSS) composting. The evolution of CO2, CH4, NH3 and N2O and maturity indexes were monitored in five composting mixtures prepared from DFSS mixed with wheat straw, while 10%, 15% and 30% zeolite+1% lime were supplemented (dry weight basis of DFSS) into the composting mass and compared with treatment only 1% lime amended and control without any amendment. The results showed that addition of higher dosage of zeolite+1% lime drastically reduce the GHGs emissions and NH3 loss. Comparison of GHGs emissions and compost quality showed that zeolite amended treatments were superior than control and 1% lime amended treatments. Therefore, DFSS composting with 30% zeolite+1% lime as consortium of additives were found to emit very less amount of GHGs and gave the highest maturity than other treatments.


Bioresource Technology | 2016

Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute

Ronghua Li; Jim J. Wang; Baoyue Zhou; Mukesh Kumar Awasthi; Amjad Ali; Zengqiang Zhang; Altaf Hussain Lahori; Amanullah Mahar

The present study deals with the preparation of a novel MgO-impregnated magnetic biochar (MMSB) for phosphate recovery from aqueous solution. The MMSB was evaluated against sugarcane harvest residue biochar (SB) and magnetic biochar without Mg (MSB). The results showed that increasing Mg content in MMSB greatly improved the phosphate adsorption compared to SB and MSB, with 20% Mg-impregnated MMSB (20MMSB) recovering more than 99.5% phosphate from aqueous solution. Phosphate adsorption capacity of 20MMSB was 121.25mgP/g at pH 4 and only 37.53% of recovered phosphate was desorbed by 0.01mol/L HCl solutions. XRD and FTIR analysis showed that phosphate sorption mechanisms involved predominately with surface electrostatic attraction and precipitation with impregnated MgO and surface inner-sphere complexation with Fe oxide. The 20MMSB exhibited both maximum phosphate sorption and strong magnetic separation ability. Overall, phosphate-loaded 20MMSB significantly enhanced plant growth and could be used as a potential substitute for phosphate-based fertilizer.


Bioresource Technology | 2016

Role of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission during sewage sludge composting

Mukesh Kumar Awasthi; Quan Wang; Xiuna Ren; Junchao Zhao; Hui Huang; Sanjeev Kumar Awasthi; Altaf Hussain Lahori; Ronghua Li; Lina Zhou; Zengqiang Zhang

The objective of the present study was to mitigate the greenhouse gas (GHG) emissions during composting of dewatered fresh sewage sludge (DFSS) employing biochar combined with zeolite (B+Z) and low dosage of lime (B+L). The 12% biochar was mixed at a 10%, 15% and 30% of zeolite and 1% lime, while without any additives was used as control. The results indicated that the combine use of B+Z was significantly increased the enzymatic activities and reduced the ammonia loss 58.03-65.17% as compare to B+L amended treatment, while CH4 92.85-95.34% and N2O 95.14-97.28% decreased than control. The B+L1% amendment significantly increased the organic matter degradation but the reduction was lower than B+Z and that could reduce the CH4 and N2O emission by 55.17-63.08% and 62.24-65.53% as compare to control, respectively. Overall our results demonstrated that 12%B+Z10% addition into DFSS can be potentially used to improve the DFSS composting by mitigation of GHG emission and nitrogen loss.


Ecotoxicology and Environmental Safety | 2016

Impact of CaO, fly ash, sulfur and Na2S on the (im)mobilization and phytoavailability of Cd, Cu and Pb in contaminated soil.

Amanullah Mahar; Ping Wang; Amjad Ali; Zhanyu Guo; Mukesh Kumar Awasthi; Altaf Hussain Lahori; Quan Wang; Feng Shen; Ronghua Li; Zengqiang Zhang

Soil heavy metals pollution is a serious problem worldwide due to its potential human health risks through food chain. Therefore, a sustainable solution is needed to efficiently remediate HMs contaminated soils. Our study aimed to assess the impact of CaO, fly ash, sulfur, and Na2S on the immobilization of Cd, Cu, and Pb and their uptake by Chinese cabbage (Brassica rapa chinensis) in a contaminated soil. The concentration of DTPA-extractable Cd, Cu, and Pb was significantly decreased as compared to control in treated soil. However, the solubility of Cd, Cu, and Pb has increased at greater extent in soil system which favored the uptake of metals in roots and shoots of Chinese cabbage. In general, Cd uptake was significantly increased in shoots followed by roots as compared to control. In addition, Cu has also same trend of increased uptake in shoots as compared to roots. However, the uptake Pb in shoots was considerably increased in Na2S treated samples whereas roots have shown great potential for Pb uptake in CaO treated samples as compared to control. Although, sulfur treatments had efficiently immobilized metals but reduced soil pH to highly acidic level which restricted the growth of Chinese cabbage in sulfur treated samples. We assume that sulfur amendment could be applied for immobilization of metals in alkaline soils rather than acidic soils to achieve better immobilization results. In order to achieve sustainable phytoextraction of Cd, Cu, and Pb using CaO, FA, and Na2S, the non-edible hyperaccumulators species are suggested to be investigated in future studies.


Ecotoxicology and Environmental Safety | 2017

Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils

Altaf Hussain Lahori; Zengqiang Zhang; Zhanyu Guo; Amanullah Mahar; Ronghua Li; Mukesh Kumar Awasthi; Tanveer Ali Sial; Farhana Kumbhar; Ping Wang; Feng Shen; Junchao Zhao; Hui Huang

This explorative study was aimed to assess the efficiency of lime alone and in combined with additives to immobilize Pb, Cd, Cu and Zn in soil and reduce their phytoavailability for plant. A greenhouse pot experiment was performed by using low and heavily contaminated top soils viz. Tongguan contaminated (TG-C); Fengxian heavily contaminated (FX-HC) and Fengxian low contaminated (FX-LC). The contaminated soils were treated with lime (L) alone and in combined with Ca-bentonite (CB), Tobacco biochar (TB) and Zeolite (Z) at 1% and cultivated by Chinese cabbage (Brassica campestris L). Results revealed that all amendments (p< 0.05) significantly reduced the DTPA-extractable Pb 97.33, Cd 68.06 and Cu 91.11% with L+TB, L+CB, L+Z in FX-LC soil and Zn 87.12% respectively, with L+CB into TG-C soil. Consequently, the application of lime alone and in combined with additives were drastically decreased the dry biomass yield of Brassica campestris L. as compared with control. Thus, these feasible amendments potentially maximum reduced the uptake by plant shoots upto Pb 53.47 and Zn 67.93% with L+Z and L+TB in FX-LC soil, while Cd 68.58 and Cu 60.29% with L+TB, L+CB in TG-C soil but Cu uptake in plant shoot was observed 27.26% and 30.17% amended with L+TB and L+Z in FX-HC and FX-LC soils. On the other hand, these amendments were effectively reduced the potentially toxic metals (PTMs) in roots upto Pb77.77% L alone in FX-HC, Cd 96.76% with L+TB in TG-C, while, Cu 66.70 and Zn 60.18% with L+Z in FX-LC. Meanwhile, all amendments were responsible for increasing soil pH and CEC but decreased soils EC level. Based on this result, these feasible soil amendments were recommended for long term-study under field condition to see the response of another hyper accumulator crop.


Waste Management | 2017

Heterogeneity of zeolite combined with biochar properties as a function of sewage sludge composting and production of nutrient-rich compost

Mukesh Kumar Awasthi; Meijing Wang; Ashok Pandey; Hongyu Chen; Sanjeev Kumar Awasthi; Quan Wang; Xiuna Ren; Altaf Hussain Lahori; Dong-sheng Li; Ronghua Li; Zengqiang Zhang

In the present study, biochar combined with a higher dosage of zeolite (Z) and biochar (B) alone were applied as additives for dewatered fresh sewage sludge (DFSS) composting using 130-L working volume lab-scale reactors. We first observed that the addition of a mixture of B and Z to DFSS equivalent to 12%B+10% (Z-1), 15% (Z-2) and 30% (Z-3) zeolite (dry weight basis) worked synergistically as an amendment and increased the composting efficiency compared with a treatment of 12%B alone amended and a control without any amendment. In a composting reactor, the addition of B+Z may serve as a novel approach for improving DFSS composting and the quality of the end product in terms of the temperature, water-holding capacity, CO2 emissions, electrical conductivity, water-soluble and total macro-nutrient content and phytotoxicity. The results indicated that during the thermophilic phase, dissolved organic carbon, NH4+-N and NO3--N increased drastically in all biochar amended treatments, whereas considerably low water-soluble nutrients were observed in the control treatment throughout and at the end of the composting. Furthermore, the maturity parameters and dissolved organic carbon (DOC) indicated that compost with 12%B+15%Z became more mature and humified within 35days of DFSS composting, with the maturity parameters, such as CO2 evolution and the concentration of NH4+-N in the compost, being within the permissible limits of organic farming in contrast to the control. Furthermore, at the end of composting, the addition of higher dosage of biochar (12%) alone and 12% B+Z lowered the pH by 7.15 to 7.86 and the electrical conductivity by 2.65 to 2.95mScm-1 as compared to the control, while increased the concentrations of water-soluble nutrients (gkg-1) including available phosphorus, sodium and potassium. In addition, greenhouse experiments demonstrated that the treatment of 150kgha-1 biochar combined with zeolite and that of 12%B alone improved the yield of Chinese cabbage (Brassica rapa chinensis L.). The highest dry weight biomass (1.41±0.12g/pot) was obtained with 12%B+15%Z amended compost. Therefore, 12%B+15%Z can be potentially applied as an amendment to improve DFSS composting.


Ecotoxicology and Environmental Safety | 2017

Beneficial effects of tobacco biochar combined with mineral additives on (im)mobilization and (bio)availability of Pb, Cd, Cu and Zn from Pb/Zn smelter contaminated soils

Altaf Hussain Lahori; Zengqiang Zhang; Zhanyu Guo; Ronghua Li; Amanullah Mahar; Mukesh Kumar Awasthi; Ping Wang; Feng Shen; Farhana Kumbhar; Tanveer Ali Sial; Junchao Zhao; Di Guo

The efficacy of tobacco biochar (TB) alone and in combined with mineral additives: Ca-hydroxide (CH), Ca-bentonite (CB) and natural zeolite (NZ), on immobilization of Pb, Cd, Cu and Zn, via reduce its (bio) availability to plants were investigated. The soils were collected from Tongguan contaminated (TG-C), Fengxian heavily contaminated (FX-HC) and Fengxian lightly contaminated (FX-LC) fields, Shaanxi province, China. The contaminated top soils were treated with low-cost amendments with an application rate of 1% and cultivated by Chinese cabbage (Brassica campestris L.) under greenhouse condition. Results showed that the all amendments (p < 0.05) potentially maximum reduced the DTPA-extractable Pb 82.53, Cd 31.52 and Cu 75.0% with TB + NZ in FX-LC soil, while in case of Zn 62.21% with TB + CH in FX-HC soil than control. The addition of amendments clearly increased dry biomass of Brassica campestris L. as compared with un-amended treatment (except TB + CH). Furthermore, these amendments markedly increased the uptake by plant shoot viz, Cd 10.51% with TB alone and 11.51% with TB + CB in FX-HC soil, similarly in FX-LC Cd increased 5.15% with TB + CH and 22.19% with TB + NZ, respectively. In same trend the Cu uptake in plant shoot was 19.30% with TB + CH in TG-C, whereas 43.90 TB + CH and 19.24% with TB + NZ in FX-LC soil. On the other hand as compared to control Cu accumulation in plant root was observed by TB, TB + CH and TB + CB treatments, while maximum uptake was 62.41% with TB + CH in TG-C soil. Consequently, except TB + CH treatment the chlorophyll content potentially increased in all amendment than control treatment, because of changes in soil EC, pH but increased CEC values after application of amendments. The results of this pot experiment are promising but they will further need to be confirmed with long-term field experiments.


Bioresource Technology | 2018

Influence of biochar on volatile fatty acids accumulation and microbial community succession during biosolids composting

Mukesh Kumar Awasthi; Sanjeev Kumar Awasthi; Quan Wang; Zhen Wang; Altaf Hussain Lahori; Xiuna Ren; Hongyu Chen; Meijing Wang; Junchao Zhao; Zengqiang Zhang

The impact of biochar amendment on volatile fatty acids (VFAs) and odor generation during the biosolids-wheat straw composting was investigated. Five treatments were design using the same mixture of biosolids-wheat straw with different dosage of biochar blending (2%, 4%, 8% and 12% on dry weight basis) and without biochar applied treatment served as control. The results of VFAs and Odour Index (OI) profile designated that compost with 8-12% biochar became more rapidly humified with less quantity of VFAs and OI generation content compared to control. Consequently, the VFAs degrading and total bacterial abundance are also significantly higher recorded in 8-12% biochar than 2% biochar and control. In addition, 8-12% biochar applied treatment has significantly maximum close correlation among the all physicochemical and gaseous emission parameters. Finally, results designated that higher dosage of biochar (8-12% biochar) was more feasible approach for biosolids composting.

Collaboration


Dive into the Altaf Hussain Lahori's collaboration.

Top Co-Authors

Avatar

Zengqiang Zhang

College of Natural Resources

View shared research outputs
Top Co-Authors

Avatar

Mukesh Kumar Awasthi

College of Natural Resources

View shared research outputs
Top Co-Authors

Avatar

Ronghua Li

College of Natural Resources

View shared research outputs
Top Co-Authors

Avatar

Quan Wang

College of Natural Resources

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Shen

College of Natural Resources

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping Wang

College of Natural Resources

View shared research outputs
Top Co-Authors

Avatar

Zhanyu Guo

College of Natural Resources

View shared research outputs
Top Co-Authors

Avatar

Hui Huang

College of Natural Resources

View shared research outputs
Researchain Logo
Decentralizing Knowledge