Altuna Akalin
Max Delbrück Center for Molecular Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Altuna Akalin.
Genome Biology | 2012
Altuna Akalin; Matthias Kormaksson; Sheng Li; Francine E. Garrett-Bakelman; Maria E. Figueroa; Ari Melnick; Christopher E. Mason
DNA methylation is a chemical modification of cytosine bases that is pivotal for gene regulation,cellular specification and cancer development. Here, we describe an R package, methylKit, thatrapidly analyzes genome-wide cytosine epigenetic profiles from high-throughput methylation andhydroxymethylation sequencing experiments. methylKit includes functions for clustering, samplequality visualization, differential methylation analysis and annotation features, thus automatingand simplifying many of the steps for discerning statistically significant bases or regions of DNAmethylation. Finally, we demonstrate methylKit on breast cancer data, in which we find statisticallysignificant regions of differential methylation and stratify tumor subtypes. methylKit is availableat http://code.google.com/p/methylkit.
Nature | 2015
Tuncay Baubec; Daniele F. Colombo; Christiane Wirbelauer; Juliane Schmidt; Lukas Burger; Arnaud Krebs; Altuna Akalin; Dirk Schübeler
DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined genomic binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG-dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity.
PLOS Genetics | 2012
Altuna Akalin; Francine E. Garrett-Bakelman; Matthias Kormaksson; Jennifer Busuttil; Lu Zhang; Irina Khrebtukova; Thomas A. Milne; Yongsheng Huang; Debabrata Biswas; Jay L. Hess; C. David Allis; Robert G. Roeder; Bob Löwenberg; Ruud Delwel; Hugo F. Fernandez; Elisabeth Paietta; Martin S. Tallman; Gary P. Schroth; Christopher E. Mason; Ari Melnick; Maria E. Figueroa
We have developed an enhanced form of reduced representation bisulfite sequencing with extended genomic coverage, which resulted in greater capture of DNA methylation information of regions lying outside of traditional CpG islands. Applying this method to primary human bone marrow specimens from patients with Acute Myelogeneous Leukemia (AML), we demonstrated that genetically distinct AML subtypes display diametrically opposed DNA methylation patterns. As compared to normal controls, we observed widespread hypermethylation in IDH mutant AMLs, preferentially targeting promoter regions and CpG islands neighboring the transcription start sites of genes. In contrast, AMLs harboring translocations affecting the MLL gene displayed extensive loss of methylation of an almost mutually exclusive set of CpGs, which instead affected introns and distal intergenic CpG islands and shores. When analyzed in conjunction with gene expression profiles, it became apparent that these specific patterns of DNA methylation result in differing roles in gene expression regulation. However, despite this subtype-specific DNA methylation patterning, a much smaller set of CpG sites are consistently affected in both AML subtypes. Most CpG sites in this common core of aberrantly methylated CpGs were hypermethylated in both AML subtypes. Therefore, aberrant DNA methylation patterns in AML do not occur in a stereotypical manner but rather are highly specific and associated with specific driving genetic lesions.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Kate Schroder; Katharine M. Irvine; Martin S. Taylor; Nilesh J. Bokil; Kim-Anh Lê Cao; Kelly-Anne Masterman; Larisa I. Labzin; Colin A. Semple; Ronan Kapetanovic; Lynsey Fairbairn; Altuna Akalin; Geoffrey J. Faulkner; John Kenneth Baillie; Milena Gongora; Carsten O. Daub; Hideya Kawaji; Geoffrey J. McLachlan; Nick Goldman; Sean M. Grimmond; Piero Carninci; Harukazu Suzuki; Yoshihide Hayashizaki; Boris Lenhard; David A. Hume; Matthew J. Sweet
Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like receptor (TLR)–4 agonist lipopolysaccharide (LPS). By using a custom platform permitting cross-species interrogation coupled with deep sequencing of mRNA 5′ ends, we identified extensive divergence in LPS-regulated orthologous gene expression between humans and mice (24% of orthologues were identified as “divergently regulated”). We further demonstrate concordant regulation of human-specific LPS target genes in primary pig macrophages. Divergently regulated orthologues were enriched for genes encoding cellular “inputs” such as cell surface receptors (e.g., TLR6, IL-7Rα) and functional “outputs” such as inflammatory cytokines/chemokines (e.g., CCL20, CXCL13). Conversely, intracellular signaling components linking inputs to outputs were typically concordantly regulated. Functional consequences of divergent gene regulation were confirmed by showing LPS pretreatment boosts subsequent TLR6 responses in mouse but not human macrophages, in keeping with mouse-specific TLR6 induction. Divergently regulated genes were associated with a large dynamic range of gene expression, and specific promoter architectural features (TATA box enrichment, CpG island depletion). Surprisingly, regulatory divergence was also associated with enhanced interspecies promoter conservation. Thus, the genes controlled by complex, highly conserved promoters that facilitate dynamic regulation are also the most susceptible to evolutionary change.
Developmental Dynamics | 2009
José Bessa; Juan J. Tena; Elisa de la Calle-Mustienes; Ana Fernández-Miñán; Silvia Naranjo; A. Fernández; Lluís Montoliu; Altuna Akalin; Boris Lenhard; Fernando Casares; José Luis Gómez-Skarmeta
The identification and characterization of the regulatory activity of genomic sequences is crucial for understanding how the information contained in genomes is translated into cellular function. The cis‐regulatory sequences control when, where, and how much genes are transcribed and can activate (enhancers) or repress (silencers) gene expression. Here, we describe a novel Tol2 transposon‐based vector for assessing enhancer activity in the zebrafish (Danio rerio). This Zebrafish Enhancer Detector (ZED) vector harbors several key improvements, among them a sensitive and specific minimal promoter chosen for optimal enhancer activity detection, insulator sequences to shield the minimal promoter from position effects, and a positive control for transgenesis. Additionally, we demonstrate that highly conserved noncoding sequences homologous between humans and zebrafish largely with enhancer activity largely retain their tissue‐specific enhancer activity during vertebrate evolution. More strikingly, insulator sequences from mouse and chicken, but not conserved in zebrafish, maintain their insulator capacity when tested in this model. Developmental Dynamics 238:2409–2417, 2009.
Genes & Development | 2013
Chao Lu; Sriram Venneti; Altuna Akalin; Fang Fang; Patrick S. Ward; Raymond G. DeMatteo; Andrew M. Intlekofer; Chong Chen; Jiangbin Ye; Meera Hameed; Khedoudja Nafa; Narasimhan P. Agaram; Justin R. Cross; Raya Khanin; Christopher E. Mason; John H. Healey; Scott W. Lowe; Gary K. Schwartz; Ari Melnick; Craig B. Thompson
More than 50% of patients with chondrosarcomas exhibit gain-of-function mutations in either isocitrate dehydrogenase 1 (IDH1) or IDH2. In this study, we performed genome-wide CpG methylation sequencing of chondrosarcoma biopsies and found that IDH mutations were associated with DNA hypermethylation at CpG islands but not other genomic regions. Regions of CpG island hypermethylation were enriched for genes implicated in stem cell maintenance/differentiation and lineage specification. In murine 10T1/2 mesenchymal progenitor cells, expression of mutant IDH2 led to DNA hypermethylation and an impairment in differentiation that could be reversed by treatment with DNA-hypomethylating agents. Introduction of mutant IDH2 also induced loss of contact inhibition and generated undifferentiated sarcomas in vivo. The oncogenic potential of mutant IDH2 correlated with the ability to produce 2-hydroxyglutarate. Together, these data demonstrate that neomorphic IDH2 mutations can be oncogenic in mesenchymal cells.
Nature | 2014
Vanja Haberle; Nan Li; Yavor Hadzhiev; Charles Plessy; Christopher Previti; Chirag Nepal; Jochen Gehrig; Xianjun Dong; Altuna Akalin; Ana Maria Suzuki; Wilfred van IJcken; Olivier Armant; Marco Ferg; Uwe Strähle; Piero Carninci; Ferenc Müller; Boris Lenhard
A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs and recruits general transcription factors to initiate transcription. The nature and causative relationship of the DNA sequence and chromatin signals that govern the selection of most TSSs by RNA polymerase II remain unresolved. Maternal to zygotic transition represents the most marked change of the transcriptome repertoire in the vertebrate life cycle. Early embryonic development in zebrafish is characterized by a series of transcriptionally silent cell cycles regulated by inherited maternal gene products: zygotic genome activation commences at the tenth cell cycle, marking the mid-blastula transition. This transition provides a unique opportunity to study the rules of TSS selection and the hierarchy of events linking transcription initiation with key chromatin modifications. We analysed TSS usage during zebrafish early embryonic development at high resolution using cap analysis of gene expression, and determined the positions of H3K4me3-marked promoter-associated nucleosomes. Here we show that the transition from the maternal to zygotic transcriptome is characterized by a switch between two fundamentally different modes of defining transcription initiation, which drive the dynamic change of TSS usage and promoter shape. A maternal-specific TSS selection, which requires an A/T-rich (W-box) motif, is replaced with a zygotic TSS selection grammar characterized by broader patterns of dinucleotide enrichments, precisely aligned with the first downstream (+1) nucleosome. The developmental dynamics of the H3K4me3-marked nucleosomes reveal their DNA-sequence-associated positioning at promoters before zygotic transcription and subsequent transcription-independent adjustment to the final position downstream of the zygotic TSS. The two TSS-defining grammars coexist, often physically overlapping, in core promoters of constitutively expressed genes to enable their expression in the two regulatory environments. The dissection of overlapping core promoter determinants represents a framework for future studies of promoter structure and function across different regulatory contexts.
Molecular Biology and Evolution | 2008
Sutada Mungpakdee; Hee-Chan Seo; Anna R. Angotzi; Xianjun Dong; Altuna Akalin; Daniel Chourrout
Hox cluster organization represents a valuable marker to study the effects of recent genome duplication in salmonid fish (25-100 Mya). Using polymerase chain reaction amplification of cDNAs, BAC library screening, and genome walking, we reconstructed 13 Hox clusters in the Atlantic salmon containing 118 Hox genes including 8 pseudogenes. Hox paralogs resulting from the genome duplication preceding the radiation of ray-finned fish have been much better preserved in salmon than in other model teleosts. The last genome duplication in the salmon lineage has been followed by the loss of 1 of the 4 HoxA clusters. Four rounds of genome duplication after the vertebrate ancestor salmon Hox clusters display the main organizational features of vertebrate Hox clusters, with Hox genes exclusively that are densely packed in the same orientation. Recently, duplicated Hox clusters have engaged a process of divergence, with several cases of pseudogenization or asymmetrical evolution of Hox gene duplicates, and a marked erosion of identity in noncoding sequences. Strikingly, the level of divergence attained strongly depends on the Hox cluster pairs rather than on the Hox genes within each cluster. It is particularly high between both HoxBb clusters and both HoxDa clusters, whereas both HoxBa clusters remained virtually identical. Positive selection on the Hox protein-coding sequences could not be detected.
BMC Bioinformatics | 2013
Sheng Li; Francine E. Garrett-Bakelman; Altuna Akalin; Paul Zumbo; Ross L. Levine; Bik To; Ian D. Lewis; Anna L. Brown; Richard J. D'Andrea; Ari Melnick; Christopher E. Mason
BackgroundDNA methylation profiling reveals important differentially methylated regions (DMRs) of the genome that are altered during development or that are perturbed by disease. To date, few programs exist for regional analysis of enriched or whole-genome bisulfate conversion sequencing data, even though such data are increasingly common. Here, we describe an open-source, optimized method for determining empirically based DMRs (eDMR) from high-throughput sequence data that is applicable to enriched whole-genome methylation profiling datasets, as well as other globally enriched epigenetic modification data.ResultsHere we show that our bimodal distribution model and weighted cost function for optimized regional methylation analysis provides accurate boundaries of regions harboring significant epigenetic modifications. Our algorithm takes the spatial distribution of CpGs into account for the enrichment assay, allowing for optimization of the definition of empirical regions for differential methylation. Combined with the dependent adjustment for regional p-value combination and DMR annotation, we provide a method that may be applied to a variety of datasets for rapid DMR analysis. Our method classifies both the directionality of DMRs and their genome-wide distribution, and we have observed that shows clinical relevance through correct stratification of two Acute Myeloid Leukemia (AML) tumor sub-types.ConclusionsOur weighted optimization algorithm eDMR for calling DMRs extends an established DMR R pipeline (methylKit) and provides a needed resource in epigenomics. Our method enables an accurate and scalable way of finding DMRs in high-throughput methylation sequencing experiments. eDMR is available for download at http://code.google.com/p/edmr/.
Genome Research | 2013
Chirag Nepal; Yavor Hadzhiev; Christopher Previti; Vanja Haberle; Nan Li; Hazuki Takahashi; Ana Maria Suzuki; Ying Sheng; Rehab F. Abdelhamid; Santosh Anand; Jochen Gehrig; Altuna Akalin; Christel Kockx; Antoine van der Sloot; Wilfred van IJcken; Olivier Armant; Sepand Rastegar; Craig A. Watson; Uwe Strähle; Elia Stupka; Piero Carninci; Boris Lenhard; Ferenc Müller
Spatiotemporal control of gene expression is central to animal development. Core promoters represent a previously unanticipated regulatory level by interacting with cis-regulatory elements and transcription initiation in different physiological and developmental contexts. Here, we provide a first and comprehensive description of the core promoter repertoire and its dynamic use during the development of a vertebrate embryo. By using cap analysis of gene expression (CAGE), we mapped transcription initiation events at single nucleotide resolution across 12 stages of zebrafish development. These CAGE-based transcriptome maps reveal genome-wide rules of core promoter usage, structure, and dynamics, key to understanding the control of gene regulation during vertebrate ontogeny. They revealed the existence of multiple classes of pervasive intra- and intergenic post-transcriptionally processed RNA products and their developmental dynamics. Among these RNAs, we report splice donor site-associated intronic RNA (sRNA) to be specific to genes of the splicing machinery. For the identification of conserved features, we compared the zebrafish data sets to the first CAGE promoter map of Tetraodon and the existing human CAGE data. We show that a number of features, such as promoter type, newly discovered promoter properties such as a specialized purine-rich initiator motif, as well as sRNAs and the genes in which they are detected, are conserved in mammalian and Tetraodon CAGE-defined promoter maps. The zebrafish developmental promoterome represents a powerful resource for studying developmental gene regulation and revealing promoter features shared across vertebrates.