Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alun Williams is active.

Publication


Featured researches published by Alun Williams.


Journal of Neuroinflammation | 2004

Ginkgolide B inhibits the neurotoxicity of prions or amyloid-β1-42

Clive Bate; Mario Salmona; Alun Williams

BackgroundNeuronal loss in Alzheimers or prion diseases is preceded by the accumulation of fibrillar aggregates of toxic proteins (amyloid-β1-42 or the prion protein). Since some epidemiological studies have demonstrated that the EGb 761 extract, from the leaves of the Ginkgo biloba tree, has a beneficial effect on Alzheimers disease, the effect of some of the major components of the EGb 761 extract on neuronal responses to amyloid-β1-42, or to a synthetic miniprion (sPrP106), were investigated.MethodsComponents of the EGb 761 extract were tested in 2 models of neurodegeneration. SH-SY5Y neuroblastoma cells were pre-treated with ginkgolides A or B, quercetin or myricetin, and incubated with amyloid-β1-42, sPrP106, or other neurotoxins. After 24 hours neuronal survival and the production of prostaglandin E2 that is closely associated with neuronal death was measured. In primary cortical neurons apoptosis (caspase-3) in response to amyloid-β1-42 or sPrP106 was measured, and in co-cultures the effects of the ginkgolides on the killing of amyloid-β1-42 or sPrP106 damaged neurons by microglia was tested.ResultsNeurons treated with ginkgolides A or B were resistant to amyloid-β1-42 or sPrP106. Ginkgolide-treated cells were also resistant to platelet activating factor or arachidonic acid, but remained susceptible to hydrogen peroxide or staurosporine. The ginkgolides reduced the production of prostaglandin E2 in response to amyloid-β1-42 or sPrP106. In primary cortical neurons, the ginkgolides reduced caspase-3 responses to amyloid-β1-42 or sPrP106, and in co-culture studies the ginkgolides reduced the killing of amyloid-β1-42 or sPrP106 damaged neurons by microglia.ConclusionNanomolar concentrations of the ginkgolides protect neurons against the otherwise toxic effects of amyloid-β1-42 or sPrP106. The ginkgolides also prevented the neurotoxicity of platelet activating factor and reduced the production of prostaglandin E2 in response to platelet activating factor, amyloid-β1-42 or sPrP106. These results are compatible with prior reports that ginkgolides inhibit platelet-activating factor, and that platelet-activating factor antagonists block the toxicity of amyloid-β1-42 or sPrP106. The results presented here suggest that platelet-activating factor antagonists such as the ginkgolides may be relevant treatments for prion or Alzheimers diseases.


Journal of Biological Chemistry | 2011

Amyloid-β-induced Synapse Damage Is Mediated via Cross-linkage of Cellular Prion Proteins

Clive Bate; Alun Williams

The cellular prion protein (PrPC), which is highly expressed at synapses, was identified as a receptor for the amyloid-β (Aβ) oligomers that are associated with dementia in Alzheimer disease. Here, we report that Aβ oligomers secreted by 7PA2 cells caused synapse damage in cultured neurons via a PrPC-dependent process. Exogenous PrPC added to Prnp knock-out(0/0) neurons was targeted to synapses and significantly increased Aβ-induced synapse damage. In contrast, the synapse damage induced by a phospholipase A2-activating peptide was independent of PrPC. In Prnp wild-type(+/+) neurons Aβ oligomers activated synaptic cytoplasmic phospholipase A2 (cPLA2). In these cells, the addition of Aβ oligomers triggered the translocation of cPLA2 in synapses to cholesterol dense membranes (lipid rafts) where it formed a complex also containing Aβ and PrPC. In contrast, the addition of Aβ to Prnp(0/0) neurons did not activate synaptic cPLA2, which remained in the cytoplasm and was not associated with Aβ. Filtration assays and non-denaturing gels demonstrated that Aβ oligomers cross-link PrPC. We propose that it is the cross-linkage of PrPC by Aβ oligomers that triggers abnormal activation of cPLA2 and synapse damage. This hypothesis was supported by our observation that monoclonal antibody mediated cross-linkage of PrPC also activated synaptic cPLA2 and caused synapse damage.


Molecular Neurodegeneration | 2008

Ginkgolides protect against amyloid-β1–42-mediated synapse damage in vitro

Clive Bate; Mourad Tayebi; Alun Williams

BackgroundThe early stages of Alzheimers disease (AD) are closely associated with the production of the Aβ1–42 peptide, loss of synapses and gradual cognitive decline. Since some epidemiological studies showed that EGb 761, an extract from the leaves of the Ginkgo biloba tree, had a beneficial effect on mild forms of AD, the effects of some of the major components of the EGb 761 extract (ginkgolides A and B, myricetin and quercetin) on synapse damage in response to Aβ1–42 were examined.ResultsThe addition of Aβ1–42 to cortical or hippocampal neurons reduced the amounts of cell associated synaptophysin, a pre-synaptic membrane protein that is essential for neurotransmission, indicating synapse damage. The effects of Aβ1–42 on synapses were apparent at concentrations approximately 100 fold less than that required to kill neurons; the synaptophysin content of neuronal cultures was reduced by 50% by 50 nM Aβ1–42. Pre-treatment of cortical or hippocampal neuronal cultures with ginkgolides A or B, but not with myrecitin or quercetin, protected against Aβ1–42-induced loss of synaptophysin. This protective effect was achieved with nanomolar concentrations of ginkgolides. Previous studies indicated that the ginkgolides are platelet-activating factor (PAF) receptor antagonists and here we show that Aβ1–42-induced loss of synaptophysin from neuronal cultures was also reduced by pre-treatment with other PAF antagonists (Hexa-PAF and CV6209). PAF, but not lyso-PAF, mimicked the effects Aβ1–42 and caused a dose-dependent reduction in the synaptophysin content of neurons. This effect of PAF was greatly reduced by pre-treatment with ginkgolide B. In contrast, ginkgolide B did not affect the loss of synaptophysin in neurons incubated with prostaglandin E2.ConclusionPre-treatment with ginkgolides A or B protects neurons against Aβ1–42-induced synapse damage. These ginkgolides also reduced the effects of PAF, but not those of prostaglandin E2, on the synaptophysin content of neuronal cultures, results consistent with prior reports that ginkgolides act as PAF receptor antagonists. Such observations suggest that the ginkgolides are active components of Ginkgo biloba preparations and may protect against the synapse damage and the cognitive loss seen during the early stages of AD.


PLOS ONE | 2011

The Molecular Assembly of Amyloid Aβ Controls Its Neurotoxicity and Binding to Cellular Proteins

Claudia Manzoni; Laura Colombo; Paolo Bigini; Valentina Diana; Alfredo Cagnotto; Massimo Messa; Monica Lupi; Valentina Bonetto; Mauro Pignataro; Cristina Airoldi; Erika Sironi; Alun Williams; Mario Salmona

Accumulation of β-sheet-rich peptide (Aβ) is strongly associated with Alzheimers disease, characterized by reduction in synapse density, structural alterations of dendritic spines, modification of synaptic protein expression, loss of long-term potentiation and neuronal cell death. Aβ species are potent neurotoxins, however the molecular mechanism responsible for Aβ toxicity is still unknown. Numerous mechanisms of toxicity were proposed, although there is no agreement about their relative importance in disease pathogenesis. Here, the toxicity of Aβ 1–40 and Aβ 1–42 monomers, oligomers or fibrils, was evaluated using the N2a cell line. A structure-function relationship between peptide aggregation state and toxic properties was established. Moreover, we demonstrated that Aβ toxic species cross the plasma membrane, accumulate in cells and bind to a variety of internal proteins, especially on the cytoskeleton and in the endoplasmatic reticulum (ER). Based on these data we suggest that numerous proteins act as Aβ receptors in N2a cells, triggering a multi factorial toxicity.


Neuroreport | 2007

Simvastatin treatment prolongs the survival of scrapie-infected mice

Clive Bate; Alun Williams

Statins, drugs that decrease cholesterol biosynthesis, are known to reduce the formation of the disease-associated isoform of the prion protein (PrPSc) in neuroblastoma cells in vitro. In this study, we report the effects of simvastatin, a clinically approved statin that penetrates the brain, on mice infected with the ME7 strain of scrapie. The decline in motor functions associated with scrapie infection was delayed in mice receiving (1 mg/kg) simvastatin, a dosage used to treat hypercholesterolemia in humans. Simvastatin treatment also significantly prolonged the survival times of infected mice (193 vs. 183 days). These results indicate that low-dosage simvastatin treatment affects the progression of experimental scrapie, and supports the concept that statin treatment may influence the prion pathogenesis.


Neuroreport | 2001

Killing of prion-damaged neurones by microglia

Clive Bate; S. Reid; Alun Williams

The loss of neurones that occurs in the transmissible spongiform encephalopathies, or prion diseases, can be reproduced in vitro by incubating neuronal cultures with either peptides derived from the prion protein or with partially purified prion preparations. In the present studies, the extent of neuronal loss on exposure to these prions or prion peptides was increased by the addition of microglia, a process that was dependent upon the number of microglia added, the concentration of prions/peptides present and the degree of fibrillarity of the prion peptides. Microglia also killed scrapie-infected neuroblastoma cells expressing infectious PrPSC. Microglia secreted low amounts of interleukin (IL)-6 when incubated with peptides alone but up to 10 times as much IL-6 when incubated with peptide-treated neurones, suggesting that microglia recognise peptide-induced changes in neurones.


Journal of Neuroinflammation | 2006

Interferon-γ increases neuronal death in response to amyloid-β1-42

Clive Bate; Alun Williams

BackgroundAlzheimers disease is a neurodegenerative disorder characterized by a progressive cognitive impairment, the consequence of neuronal dysfunction and ultimately the death of neurons. The amyloid hypothesis proposes that neuronal damage results from the accumulation of insoluble, hydrophobic, fibrillar peptides such as amyloid-β1-42. These peptides activate enzymes resulting in a cascade of second messengers including prostaglandins and platelet-activating factor. Apoptosis of neurons is thought to follow as a consequence of the uncontrolled release of second messengers. Biochemical, histopathological and genetic studies suggest that pro-inflammatory cytokines play a role in neurodegeneration during Alzheimers disease. In the current study we examined the effects of interferon (IFN)-γ, tumour necrosis factor (TNF)α, interleukin (IL)-1β and IL-6 on neurons.MethodsPrimary murine cortical or cerebellar neurons, or human SH-SY5Y neuroblastoma cells, were grown in vitro. Neurons were treated with cytokines prior to incubation with different neuronal insults. Cell survival, caspase-3 activity (a measure of apoptosis) and prostaglandin production were measured. Immunoblots were used to determine the effects of cytokines on the levels of cytoplasmic phospholipase A2 or phospholipase C γ-1.ResultsWhile none of the cytokines tested were directly neurotoxic, pre-treatment with IFN-γ sensitised neurons to the toxic effects of amyloid-β1-42 or HuPrP82-146 (a neurotoxic peptide found in prion diseases). The effects of IFN-γ were seen on cortical and cerebellar neurons, and on SH-SY5Y neuroblastoma cells. However, pre-treatment with IFN-γ did not affect the sensitivity to neurons treated with staurosporine or hydrogen peroxide. Pre-treatment with IFN-γ increased the levels of cytoplasmic phospholipase A2 in SH-SY5Y cells and increased prostaglandin E2 production in response to amyloid-β1-42.ConclusionTreatment of neuronal cells with IFN-γ increased neuronal death in response to amyloid-β1-42 or HuPrP82-146. IFN-γ increased the levels of cytoplasmic phospholipase A2 in cultured neuronal cells and increased expression of cytoplasmic phospholipase A2 was associated with increased production of prostaglandin E2 in response to amyloid-β1-42 or HuPrP82-146. Such observations suggest that IFN-γ produced within the brain may increase neuronal loss in Alzheimers disease.


Biochemistry | 2012

The N-methylated peptide SEN304 powerfully inhibits Aβ(1-42) toxicity by perturbing oligomer formation.

Hozefa Amijee; Clive Bate; Alun Williams; Jasmeet Virdee; Ross Jeggo; David Spanswick; David I.C. Scopes; J. Mark Treherne; Sonia Mazzitelli; Ross Chawner; Claire E. Eyers; Andrew J. Doig

Oligomeric forms of β-amyloid (Aβ) have potent neurotoxic activity and are the primary cause of neuronal injury and cell death in Alzheimers disease (AD). Compounds that perturb oligomer formation or structure may therefore be therapeutic for AD. We previously reported that d-[(chGly)-(Tyr)-(chGly)-(chGly)-(mLeu)]-NH(2) (SEN304) is able to inhibit Aβ aggregation and toxicity, shown primarily by thioflavin T fluorescence and MTT (Kokkoni, N. et al. (2006) N-Methylated peptide inhibitors of β-amyloid aggregation and toxicity. Optimisation of inhibitor structure. Biochemistry 45, 9906-9918). Here we extensively characterize how SEN304 affects Aβ(1-42) aggregation and toxicity, using biophysical assays (thioflavin T, circular dichroism, SDS-PAGE, size exclusion chromatography, surface plasmon resonance, traveling wave ion mobility mass spectrometry, electron microscopy, ELISA), toxicity assays in cell culture (MTT and lactate dehydrogenase in human SH-SHY5Y cells, mouse neuronal cell death and synaptophysin) and long-term potentiation in a rat hippocampal brain slice. These data, with dose response curves, show that SEN304 is a powerful inhibitor of Aβ(1-42) toxicity, particularly effective at preventing Aβ inhibition of long-term potentiation. It can bind directly to Aβ(1-42), delay β-sheet formation and promote aggregation of toxic oligomers into a nontoxic form, with a different morphology that cannot bind thioflavin T. SEN304 appears to work by inducing aggregation, and hence removal, of Aβ oligomers. It is therefore a promising lead compound for Alzheimers disease.


Molecular Neurodegeneration | 2010

Phospholipase A2 inhibitors protect against prion and Aβ mediated synapse degeneration

Clive Bate; Mourad Tayebi; Alun Williams

BackgroundAn early event in the neuropathology of prion and Alzheimers diseases is the loss of synapses and a corresponding reduction in the level of synaptophysin, a pre-synaptic membrane protein essential for neurotransmission. The molecular mechanisms involved in synapse degeneration in these diseases are poorly understood. In this study the process of synapse degeneration was investigated by measuring the synaptophysin content of cultured neurones incubated with the prion derived peptide (PrP82-146) or with Aβ1-42, a peptide thought to trigger pathogenesis in Alzheimers disease. A pharmacological approach was used to screen cell signalling pathways involved in synapse degeneration.ResultsPre-treatment with phospholipase A2 inhibitors (AACOCF3, MAFP and aristolochic acids) protected against synapse degeneration in cultured cortical and hippocampal neurones incubated with PrP82-146 or Aβ1-42. Synapse degeneration was also observed following the addition of a specific phospholipase A2 activating peptide (PLAP) and the addition of PrP82-146 or Aβ1-42 activated cytoplasmic phospholipase A2 within synapses. Activation of phospholipase A2 is the first step in the generation of platelet-activating factor (PAF) and PAF receptor antagonists (ginkgolide B, Hexa-PAF and CV6029) protected against synapse degeneration induced by PrP82-146, Aβ1-42 and PLAP. PAF facilitated the production of prostaglandin E2, which also caused synapse degeneration and pre-treatment with the prostanoid E receptor antagonist AH13205 protected against PrP82-146, Aβ1-42 and PAF induced synapse degeneration.ConclusionsOur results are consistent with the hypothesis that PrP82-146 and Aβ1-42trigger abnormal activation of cytoplasmic phospholipase A2 resident within synapses, resulting in elevated levels of PAF and prostaglandin E2that cause synapse degeneration. Inhibitors of this pathway that can cross the blood brain barrier may protect against the synapse degeneration seen during Alzheimers or prion diseases.


Molecular Neurodegeneration | 2010

α-synuclein induced synapse damage is enhanced by amyloid-β1-42

Clive Bate; Steve M. Gentleman; Alun Williams

BackgroundThe pathogenesis of Parkinsons disease (PD) and dementia with Lewy bodies (DLB) is associated with the accumulation of aggregated forms of the α-synuclein (αSN) protein. An early event in the neuropathology of PD and DLB is the loss of synapses and a corresponding reduction in the level of synaptic proteins. However, the molecular mechanisms involved in synapse damage in these diseases are poorly understood. In this study the process of synapse damage was investigated by measuring the amount of synaptophysin, a pre-synaptic membrane protein essential for neurotransmission, in cultured neurons incubated with αSN, or with amyloid-β (Aβ) peptides that are thought to trigger synapse degeneration in Alzheimers disease.ResultsWe report that the addition of recombinant human αSN reduced the amount of synaptophysin in cultured cortical and hippocampal neurons indicative of synapse damage. αSN also reduced synaptic vesicle recycling, as measured by the uptake of the fluorescent dye FM1-43. These effects of αSN on synapses were modified by interactions with other proteins. Thus, the addition of βSN reduced the effects of αSN on synapses. In contrast, the addition of amyloid-β (Aβ)1-42 exacerbated the effects of αSN on synaptic vesicle recycling and synapse damage. Similarly, the addition of αSN increased synapse damage induced by Aβ1-42. However, this effect of αSN was selective as it did not affect synapse damage induced by the prion-derived peptide PrP82-146.ConclusionsThese results are consistent with the hypothesis that oligomers of αSN trigger synapse damage in the brains of Parkinsons disease patients. Moreover, they suggest that the effect of αSN on synapses may be influenced by interactions with other peptides produced within the brain.

Collaboration


Dive into the Alun Williams's collaboration.

Top Co-Authors

Avatar

Clive Bate

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar

Mourad Tayebi

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar

Mario Salmona

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Nolan

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luisa Diomede

Australian National University

View shared research outputs
Top Co-Authors

Avatar

B. J. Butler

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Chiara Bo

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge