Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alvaro Duque is active.

Publication


Featured researches published by Alvaro Duque.


Global Change Biology | 2014

Improved allometric models to estimate the aboveground biomass of tropical trees

Jérôme Chave; Maxime Réjou-Méchain; Alberto Búrquez; Emmanuel Chidumayo; Matthew S. Colgan; Welington Braz Carvalho Delitti; Alvaro Duque; Tron Eid; Philip M. Fearnside; Rosa C. Goodman; Matieu Henry; Wilson A Mugasha; Helene C. Muller-Landau; Maurizio Mencuccini; Bruce Walker Nelson; Alfred Ngomanda; Euler Melo Nogueira; Edgar Ortiz-Malavassi; Raphaël Pélissier; Pierre Ploton; Casey M. Ryan; Juan Saldarriaga; Ghislain Vieilledent

Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.


Nature | 2006

Continental-scale patterns of canopy tree composition and function across Amazonia

Hans ter Steege; Nigel C. A. Pitman; Oliver L. Phillips; Jérôme Chave; Daniel Sabatier; Alvaro Duque; Jean-François Molino; Marie-Françoise Prévost; Rodolphe Spichiger; Hernán Castellanos; Patricio von Hildebrand; Rodolfo Vasquez

The worlds greatest terrestrial stores of biodiversity and carbon are found in the forests of northern South America, where large-scale biogeographic patterns and processes have recently begun to be described. Seven of the nine countries with territory in the Amazon basin and the Guiana shield have carried out large-scale forest inventories, but such massive data sets have been little exploited by tropical plant ecologists. Although forest inventories often lack the species-level identifications favoured by tropical plant ecologists, their consistency of measurement and vast spatial coverage make them ideally suited for numerical analyses at large scales, and a valuable resource to describe the still poorly understood spatial variation of biomass, diversity, community composition and forest functioning across the South American tropics. Here we show, by using the seven forest inventories complemented with trait and inventory data collected elsewhere, two dominant gradients in tree composition and function across the Amazon, one paralleling a major gradient in soil fertility and the other paralleling a gradient in dry season length. The data set also indicates that the dominance of Fabaceae in the Guiana shield is not necessarily the result of root adaptations to poor soils (nodulation or ectomycorrhizal associations) but perhaps also the result of their remarkably high seed mass there as a potential adaptation to low rates of disturbance.


Nature | 2014

Rate of tree carbon accumulation increases continuously with tree size

Nathan L. Stephenson; Adrian J. Das; Richard Condit; Sabrina E. Russo; Patrick J. Baker; Noelle G. Beckman; David A. Coomes; Emily R. Lines; William K. Morris; Nadja Rüger; Eric A. Álvarez; C. Blundo; Sarayudh Bunyavejchewin; G. Chuyong; Stuart J. Davies; Alvaro Duque; Corneille E. N. Ewango; Olivier Flores; Jerry F. Franklin; H. R. Grau; Zhanqing Hao; Mark E. Harmon; Stephen P. Hubbell; David Kenfack; Yiching Lin; Jean-Remy Makana; A. Malizia; Lucio R. Malizia; R. J. Pabst; Nantachai Pongpattananurak

Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage—increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Prenatal exposure to ultrasound waves impacts neuronal migration in mice

Eugenius S. B. C. Ang; Vicko Gluncic; Alvaro Duque; Mark E. Schafer; Pasko Rakic

Neurons of the cerebral neocortex in mammals, including humans, are generated during fetal life in the proliferative zones and then migrate to their final destinations by following an inside-to-outside sequence. The present study examined the effect of ultrasound waves (USW) on neuronal position within the embryonic cerebral cortex in mice. We used a single BrdU injection to label neurons generated at embryonic day 16 and destined for the superficial cortical layers. Our analysis of over 335 animals reveals that, when exposed to USW for a total of 30 min or longer during the period of their migration, a small but statistically significant number of neurons fail to acquire their proper position and remain scattered within inappropriate cortical layers and/or in the subjacent white matter. The magnitude of dispersion of labeled neurons was variable but systematically increased with duration of exposure to USW. These results call for a further investigation in larger and slower-developing brains of non-human primates and continued scrutiny of unnecessarily long prenatal ultrasound exposure.


Journal of Ecology | 2013

Scale‐dependent relationships between tree species richness and ecosystem function in forests

Ryan A. Chisholm; Helene C. Muller-Landau; Kassim Abdul Rahman; Daniel P. Bebber; Yue Bin; Stephanie A. Bohlman; Norman A. Bourg; Joshua S. Brinks; Sarayudh Bunyavejchewin; Nathalie Butt; Hong-Lin Cao; Min Cao; Dairon Cárdenas; Li-Wan Chang; Jyh-Min Chiang; George B. Chuyong; Richard Condit; H. S. Dattaraja; Stuart J. Davies; Alvaro Duque; Christine Fletcher; Nimal Gunatilleke; Savitri Gunatilleke; Zhanqing Hao; Rhett D. Harrison; Robert W. Howe; Chang-Fu Hsieh; Stephen P. Hubbell; Akira Itoh; David Kenfack

1. The relationship between species richness and ecosystem function, as measured by productivity or biomass, is of long-standing theoretical and practical interest in ecology. This is especially true for forests, which represent a majority of global biomass, productivity and biodiversity.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Thermophilization of adult and juvenile tree communities in the northern tropical Andes

Alvaro Duque; Pablo R. Stevenson; Kenneth J. Feeley

Significance Understanding how species respond to climate change is crucial to the development of effective conservation strategies. We found directional and systematic changes in the composition of both adult and juvenile tree species in tropical north Andean forests at rates consistent with concurrent temperature increases, supporting the hypothesis of upward species migrations resulting from global warming. Our results indicate that compositional shifts occur primarily via range retractions. This suggests elevated risk for species extinctions and local biodiversity loss with ongoing warming. Other environmental filters, such as species-soil adaptations, as well as anthropogenic disturbances (e.g., habitat loss and hunting) may limit future species migrations and decrease the ability of forest communities and their constituent species to respond to climate change. Climate change is expected to cause shifts in the composition of tropical montane forests towards increased relative abundances of species whose ranges were previously centered at lower, hotter elevations. To investigate this process of “thermophilization,” we analyzed patterns of compositional change over the last decade using recensus data from a network of 16 adult and juvenile tree plots in the tropical forests of northern Andes Mountains and adjacent lowlands in northwestern Colombia. Analyses show evidence that tree species composition is strongly linked to temperature and that composition is changing directionally through time, potentially in response to climate change and increasing temperatures. Mean rates of thermophilization [thermal migration rate (TMR), °C⋅y−1] across all censuses were 0.011 °C⋅y−1 (95% confidence interval = 0.002–0.022 °C⋅y−1) for adult trees and 0.027 °C⋅y−1 (95% confidence interval = 0.009–0.050 °C⋅y−1) for juvenile trees. The fact that thermophilization is occurring in both the adult and juvenile trees and at rates consistent with concurrent warming supports the hypothesis that the observed compositional changes are part of a long-term process, such as global warming, and are not a response to any single episodic event. The observed changes in composition were driven primarily by patterns of tree mortality, indicating that the changes in composition are mostly via range retractions, rather than range shifts or expansions. These results all indicate that tropical forests are being strongly affected by climate change and suggest that many species will be at elevated risk for extinction as warming continues.


New Phytologist | 2018

Drivers and mechanisms of tree mortality in moist tropical forests

Nate G. McDowell; Craig D. Allen; Kristina J. Anderson-Teixeira; Paulo M. Brando; Roel J. W. Brienen; Jeff Chambers; Brad Christoffersen; Stuart J. Davies; Christopher E. Doughty; Alvaro Duque; Fernando Del Bon Espírito-Santo; Rosie A. Fisher; Clarissa G. Fontes; David Galbraith; Devin W. Goodsman; Charlotte Grossiord; Henrik Hartmann; Jennifer Holm; Daniel J. Johnson; Abd Rahman Kassim; Michael Keller; Charles D. Koven; Lara M. Kueppers; Tomo’omi Kumagai; Yadvinder Malhi; Sean M. McMahon; Maurizio Mencuccini; Patrick Meir; Paul R. Moorcroft; Helene C. Muller-Landau

Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.


Biotropica | 2016

Low Phylogenetic Beta Diversity and Geographic Neo-endemism in Amazonian White-sand Forests

Juan Ernesto Guevara; Gabriel Damasco; Christopher Baraloto; Paul V. A. Fine; M. C. Peñuela; Carolina V. Castilho; Alberto Vincentini; Dairon Cárdenas; Florian Wittmann; Natália Targhetta; Oliver L. Phillips; Juliana Stropp; Iêda Leão do Amaral; Paul Maas; Abel Monteagudo; Eliana M. Jimenez; Rachel Thomas; Roel J. W. Brienen; Alvaro Duque; William E. Magnusson; Cid Ferreira; Eurídice N. Honorio; Francisca Dionizia de Almeida Matos; Freddy Ramirez Arevalo; Julien Engel; Pascal Petronelli; Rodolfo V. Vasquez; Hans ter Steege

Over the past three decades, many small-scale floristic studies of white-sand forests across the Amazon basin have been published. Nonetheless, a basin-wide description of both taxonomic and phylogenetic alpha and beta diversity at regional scales has never been achieved. We present a complete floristic analysis of white-sand forests across the Amazon basin including both taxonomic and phylogenetic diversity. We found strong regional differences in the signal of phylogenetic community structure with both overall and regional Net Relatedness Index and Nearest Taxon Index values found to be significantly positive leading to a pattern of phylogenetic clustering. Additionally, we found high taxonomic dissimilarity but low phylogenetic dissimilarity in pairwise community comparisons. These results suggest that recent diversification has played an important role in the assembly of white-sand forests causing geographic neo-endemism patterns at the regional scale.


PLOS ONE | 2015

Large-scale patterns of turnover and Basal area change in Andean forests.

Selene Báez; Agustina Malizia; Julieta Carilla; Cecilia Blundo; Manuel Aguilar; Nikolay Aguirre; Zhofre Aquirre; Esteban Álvarez; Francisco Cuesta; Alvaro Duque; William Farfan-Rios; Karina Garcia-Cabrera; Ricardo J. Grau; Jürgen Homeier; Reynaldo Linares-Palomino; Lucio R. Malizia; Omar Melo Cruz; Oriana Osinaga; Oliver L. Phillips; Carlos Reynel; Miles R. Silman; Kenneth J. Feeley

General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century.


Tropical Conservation Science | 2014

The dangers of carbon-centric conservation for biodiversity: a case study in the Andes

Alvaro Duque; Kenneth J. Feeley; Edersson Cabrera; Ricardo Callejas; Álvaro Idárraga

Carbon-centric conservation strategies such as the United Nations program to Reduce CO2 Emissions from Deforestation and Degradation (REDD+), are expected to simultaneously reduce net global CO2 emissions and mitigate species extinctions in regions with high endemism and diversity, such as the Tropical Andes Biodiversity Hotspot. Using data from the northern Andes, we show, however, that carbon-focused conservation strategies may potentially lead to increased risks of species extinctions if there is displacement (i.e., “leakage”) of land-use changes from forests with large aboveground biomass stocks but relatively poor species richness and low levels of endemism, to forests with lower biomass stocks but higher species richness and endemism, as are found in the Andean highlands (especially low-biomass non-tree growth forms such as herbs and epiphytes that are often overlooked in biological inventories). We conclude that despite the considerable potential benefits of REDD+ and other carbon-centric conservation strategies, there is still a need to develop mechanisms to safeguard against possible negative effects on biodiversity in situations where carbon stocks do not covary positively with species diversity and endemism.

Collaboration


Dive into the Alvaro Duque's collaboration.

Top Co-Authors

Avatar

Stuart J. Davies

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Helene C. Muller-Landau

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel A. Peña

National University of Colombia

View shared research outputs
Top Co-Authors

Avatar

Richard Condit

Field Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esteban Álvarez

National University of Colombia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge