Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alvaro Teijeira is active.

Publication


Featured researches published by Alvaro Teijeira.


Cancer Research | 2011

Agonist Anti-CD137 mAb Act on Tumor Endothelial Cells to Enhance Recruitment of Activated T Lymphocytes

Asis Palazon; Alvaro Teijeira; Ivan Martinez-Forero; Sandra Hervas-Stubbs; Carmen Roncal; Iván Peñuelas; Juan Dubrot; Aizea Morales-Kastresana; Jose Luis Perez-Gracia; M. Carmen Ochoa; Laura Ochoa-Callejero; Alfredo Martínez; Alfonso Luque; Joseph E. Dinchuk; Ana Rouzaut; Maria Jure-Kunkel; Ignacio Melero

Agonist monoclonal antibodies (mAb) to the immune costimulatory molecule CD137, also known as 4-1BB, are presently in clinical trials for cancer treatment on the basis of their costimulatory effects on primed T cells and perhaps other cells of the immune system. Here we provide evidence that CD137 is selectively expressed on the surface of tumor endothelial cells. Hypoxia upregulated CD137 on murine endothelial cells. Treatment of tumor-bearing immunocompromised Rag(-/-) mice with agonist CD137 mAb did not elicit any measurable antiangiogenic effects. In contrast, agonist mAb stimulated tumor endothelial cells, increasing cell surface expression of the adhesion molecules intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin. When adoptively transferred into mice, activated T lymphocytes derived from CD137-deficient animals entered more avidly into tumor tissue after treatment with agonist mAb. This effect could be neutralized with anti-ICAM-1 and anti-VCAM-1 blocking antibodies. Thus, stimulation of CD137 not only enhanced T-cell activation but also augmented their trafficking into malignant tissue, through direct actions on the blood vessels that irrigate the tumor. Our findings identify an additional mechanism of action that can explain the immunotherapeutic effects of agonist CD137 antibodies.


Cancer Discovery | 2012

The HIF-1α Hypoxia Response in Tumor-Infiltrating T Lymphocytes Induces Functional CD137 (4-1BB) for Immunotherapy

Asis Palazon; Ivan Martinez-Forero; Alvaro Teijeira; Aizea Morales-Kastresana; Carlos Alfaro; Miguel F. Sanmamed; Jose Luis Perez-Gracia; Iván Peñuelas; Sandra Hervas-Stubbs; Ana Rouzaut; Manuel O. Landázuri; Maria Jure-Kunkel; Julián Aragonés; Ignacio Melero

UNLABELLED The tumor microenvironment of transplanted and spontaneous mouse tumors is profoundly deprived of oxygenation as confirmed by positron emission tomographic (PET) imaging. CD8 and CD4 tumor-infiltrating T lymphocytes (TIL) of transplanted colon carcinomas, melanomas, and spontaneous breast adenocarcinomas are CD137 (4-1BB)-positive, as opposed to their counterparts in tumor-draining lymph nodes and spleen. Expression of CD137 on activated T lymphocytes is markedly enhanced by hypoxia and the prolyl-hydroxylase inhibitor dimethyloxalylglycine (DMOG). Importantly, hypoxia does not upregulate CD137 in hypoxia-inducible factor (HIF)-1α-knockout T cells, and such HIF-1α-deficient T cells remain CD137-negative even when becoming TILs, in clear contrast to co-infiltrating and co-transferred HIF-1α-sufficient T lymphocytes. The fact that CD137 is selectively expressed on TILs was exploited to confine the effects of immunotherapy with agonist anti-CD137 monoclonal antibodies to the tumor tissue. As a result, low-dose intratumoral injections avoid liver inflammation, achieve antitumor systemic effects, and permit synergistic therapeutic effects with PD-L1/B7-H1 blockade. SIGNIFICANCE CD137 (4-1BB) is an important molecular target to augment antitumor immunity. Hypoxia in the tumor microenvironment as sensed by the HIF-1α system increases expression of CD137 on tumor-infiltrating lymphocytes that thereby become selectively responsive to the immunotherapeutic effects of anti-CD137 agonist monoclonal antibodies as those used in ongoing clinical trials.


Clinical Cancer Research | 2016

Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs)

Carlos Alfaro; Alvaro Teijeira; Carmen Oñate; Guiomar Perez; Miguel F. Sanmamed; Maria Pilar Andueza; Diego Alignani; Sara Labiano; Arantza Azpilikueta; Alfonso Rodriguez-Paulete; Saray Garasa; Juan Pablo Fusco; María Ángela Aznar; Susana Inoges; José Medina-Echeverz; Pedro Berraondo; Jose Luis Perez-Gracia; Ignacio Melero

Purpose: Myeloid-derived suppressor cells (MDSC) are considered an important T-cell immunosuppressive component in cancer-bearing hosts. The factors that attract these cells to the tumor microenvironment are poorly understood. IL8 (CXCL8) is a potent chemotactic factor for neutrophils and monocytes. Experimental Design: MDSC were characterized and sorted by multicolor flow cytometry on ficoll-gradient isolated blood leucokytes from healthy volunteers (n = 10) and advanced cancer patients (n = 28). In chemotaxis assays, sorted granulocytic and monocytic MDSC were tested in response to recombinant IL8, IL8 derived from cancer cell lines, and patient sera. Neutrophil extracellular traps (NETs) formation was assessed by confocal microscopy, fluorimetry, and time-lapse fluorescence confocal microscopy on short-term MDSC cultures. Results: IL8 chemoattracts both granulocytic (GrMDSC) and monocytic (MoMDSC) human MDSC. Monocytic but not granulocytic MDSC exerted a suppressor activity on the proliferation of autologous T cells isolated from the circulation of cancer patients. IL8 did not modify the T-cell suppressor activity of human MDSC. However, IL8 induced the formation of NETs in the GrMDSC subset. Conclusions: IL8 derived from tumors contributes to the chemotactic recruitment of MDSC and to their functional control. Clin Cancer Res; 22(15); 3924–36. ©2016 AACR.


European Journal of Immunology | 2010

Dendritic cells adhere to and transmigrate across lymphatic endothelium in response to IFN‐α

Ana Rouzaut; Saray Garasa; Alvaro Teijeira; Iranzu González; Ivan Martinez-Forero; Natalia Suarez; Esther Larrea; Carlos Alfaro; Asis Palazon; Juan Dubrot; Sandra Hervas-Stubbs; Ignacio Melero

Migration of DC into lymphatic vessels ferries antigenic cargo and pro‐inflammatory stimuli into the draining LN. Given that tissues under the influence of viral infections produce type I IFN, it is conceivable that these cytokines enhance DC migration in order to facilitate an antiviral immune response. Cultured lymphatic endothelium monolayers pretreated with TNF‐α were used to model this phenomenon under inflammatory conditions. DC differentiated in the presence of either IFN‐α2b or IFN‐α5 showed enhanced adhesion to cultured lymphatic endothelial cells. These pro‐adhesive effects were mediated by DC, not the lymphatic endothelium, and correlated with increased DC transmigration across lymphatic endothelial cell monolayers. Transmigration was guided by chemokines acting on DC, and blocking experiments with mAb indicated a role for LFA‐1. Furthermore, incubation of DC with IFN‐α led to the appearance of active conformation epitopes on the CD11a integrin chains expressed by DC. Differentiation of mouse DC in the presence of IFN‐α also increased DC migration from inflammed footpads toward popliteal LN. Collectively, these results indicate a role for type I IFN in directing DC toward LN under inflammatory conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Focusing and sustaining the antitumor CTL effector killer response by agonist anti-CD137 mAb

Bettina Weigelin; Elixabet Bolaños; Alvaro Teijeira; Ivan Martinez-Forero; Sara Labiano; Arantza Azpilikueta; Aizea Morales-Kastresana; Jose I. Quetglas; Esther Wagena; Alfonso R. Sánchez-Paulete; Lieping Chen; Peter Friedl; Ignacio Melero

Significance Immunotherapy of cancer with immunomodulatory agents is achieving significant efficacy in an important fraction of patients. The stimulatory inducible receptor of T and NK lymphocytes known as CD137 or 4-1BB is being stimulated with agonist antibodies to enhance antitumor immunity in clinical trials. In addition, the intracellular signaling domain of CD137 is crucial as a component of successful anti-leukemia therapies with chimeric antigen receptors transduced into adoptively transferred T lymphocytes. In this study the marked synergistic effects of adoptive T cell and agonist anti-CD137 mAb therapies are studied, providing in vivo evidence for improved, more sustained and focused tumoricidal functions of antitumor cytotoxic T lymphocytes when under the influence of CD137-targeted pharmacological stimulation with immunostimulatory monoclonal antibodies. Cancer immunotherapy is undergoing significant progress due to recent clinical successes by refined adoptive T-cell transfer and immunostimulatory monoclonal Ab (mAbs). B16F10-derived OVA-expressing mouse melanomas resist curative immunotherapy with either adoptive transfer of activated anti-OVA OT1 CTLs or agonist anti-CD137 (4-1BB) mAb. However, when acting in synergistic combination, these treatments consistently achieve tumor eradication. Tumor-infiltrating lymphocytes that accomplish tumor rejection exhibit enhanced effector functions in both transferred OT-1 and endogenous cytotoxic T lymphocytes (CTLs). This is consistent with higher levels of expression of eomesodermin in transferred and endogenous CTLs and with intravital live-cell two-photon microscopy evidence for more efficacious CTL-mediated tumor cell killing. Anti-CD137 mAb treatment resulted in prolonged intratumor persistence of the OT1 CTL-effector cells and improved function with focused and confined interaction kinetics of OT-1 CTL with target cells and increased apoptosis induction lasting up to six days postadoptive transfer. The synergy of adoptive T-cell therapy and agonist anti-CD137 mAb thus results from in vivo enhancement and sustainment of effector functions.


Seminars in Immunopathology | 2014

Taking the lymphatic route: dendritic cell migration to draining lymph nodes

Alvaro Teijeira; Erica Russo; Cornelia Halin

In contrast to leukocyte migration through blood vessels, trafficking via lymphatic vessels (LVs) is much less well characterized. An important cell type migrating via this route is antigen-presenting dendritic cells (DCs), which are key for the induction of protective immunity as well as for the maintenance of immunological tolerance. In this review, we will summarize and discuss current knowledge of the cellular and molecular events that control DC migration from the skin towards, into, and within LVs, followed by DC arrival and migration in draining lymph nodes. Finally, we will discuss potential strategies to therapeutically target this migratory step to modulate immune responses.


The FASEB Journal | 2012

CD137 on inflamed lymphatic endothelial cells enhances CCL21-guided migration of dendritic cells

Alvaro Teijeira; Asis Palazon; Saray Garasa; Diego Marre; Cristina Aubá; Anne Rogel; Ohiana Murillo; Ivan Martinez-Forero; François Lang; Ignacio Melero; Ana Rouzaut

CD137/TNFR9/41BB was originally described as a surface molecule present on activated T and NK cells. However, its expression is broader among leukocytes, and it is also detected on hypoxic endothelial cells and inflamed blood vessels, as well as in atherosclerotic lesions. Here, we demonstrate that lymphatic endothelial cells (LECs) up‐regulate CD137 expression from undetectable baseline levels on stimulation with TNF‐α, LPS, and IL‐1β. CD137 cross‐linking with an agonistic mAb results in NF‐κB nuclear translocation, followed by up‐regulation of VCAM and a 3‐fold increase in the production of the chemokine CCL21. Accordingly, there is a 50% increase in CCR7‐dependent migration toward conditioned medium from activated LECs on CD137 cross‐linking with the agonistic mAb or the natural ligand (CD137L). Such an enhancement of cell migration is also observed with monocyte‐derived dendritic cells transmigrating across CD137‐activated LEC monolayers. Using explanted human dermal tissue, we found that inflamed skin contains abundant CD137+ lymphatic vessels and that ex vivo incubation of explanted human dermis with TNF‐α induces CD137 expression in lymphatic capillaries. More interestingly, treatment with CD137 agonistic antibody induces CCL21 expression and DC accumulation close to lymphatic vessels. Collectively, our results demonstrate that the inflammatory function of lymphatic vessels can be regulated by CD137.—Teijeira, A., Palazón, A., Garasa, S., Marré, D., Aubá, C., Rogel, A., Murillo, O., Martínez‐Forero, I., Lang, F., Melero, I., Rouzaut, A. CD137 on inflamed lymphatic endothelial cells enhances CCL21‐guided migration of dendritic cells. FASEB J. 26, 3380–3392 (2012). www.fasebj.org


International Journal of Cancer | 2011

Intratumoral injection of interferon‐α and systemic delivery of agonist anti‐CD137 monoclonal antibodies synergize for immunotherapy

Juan Dubrot; Asis Palazon; Carlos Alfaro; Arantza Azpilikueta; Maria C. Ochoa; Ana Rouzaut; Ivan Martinez-Forero; Alvaro Teijeira; Pedro Berraondo; Agnès Le Bon; Sandra Hervas-Stubbs; Ignacio Melero

CD137 artificial costimulation results in complete tumor rejection in several mouse models. Type I interferons (IFN) exert antitumor effects through an array of molecular functions on malignant cells, tumor stroma and immune system cells. The fact that agonist anti‐CD137 mAb induce tumor regressions in mice deficient in the unique receptor for Type I IFNs (IFNAR−/−) indicated potential for treatment combinations. Indeed, combination of intratumor injections of mouse IFN‐α and intraperitoneal injections of anti‐CD137 mAb synergized as seen on subcutaneous lesions derived from the MC38 colon carcinoma, which is resistant to each treatment if given separately. Therapeutic activity was achieved both against lesions directly injected with IFN‐α and against distant concomitant tumors. Experiments in bone marrow chimeras prepared with IFNAR−/− and WT mice concluded that expression of the receptor for Type I interferons is mainly required on cells of the hematopoietic compartment. Synergistic effects correlated with a remarkable cellular hyperplasia of the tumor draining lymph nodes (TDLNs). Enlarged TDLNs contained more plasmacytoid and conventional dendritic cells (DC) that more readily cross‐presented. Importantly, numbers of both DC subtypes inversely correlated with the tumor size. Numbers of CD8 T cells specific for a dominant tumor antigen were increased at TDLNs by each separate treatment but only with slight augments due to the combination. Combined antitumor effects of the therapeutic strategy were also seen on subcutaneous TC‐1 tumors established for 24 days before treatment onset. The described strategy is realistic because (i) agents of each kind are clinically available and (ii) equivalent procedures in humans are feasible.


Journal of Investigative Dermatology | 2013

Lymphatic endothelium forms integrin-engaging 3D structures during DC transit across inflamed lymphatic vessels.

Alvaro Teijeira; Saray Garasa; Rafael Peláez; Arantza Azpilikueta; Carmen Ochoa; Diego Marre; Magda Rodrigues; Carlos Alfaro; Cristina Aubá; Salvatore Valitutti; Ignacio Melero; Ana Rouzaut

Dendritic cell (DC) transmigration across the lymphatic endothelium is critical for the initiation and sustenance of immune responses. Under noninflammatory conditions, DC transit across the lymphatic endothelial cell (LEC) has been shown to be integrin independent. In contrast, there is increasing evidence for the participation of integrins and their ligands in DC transit across lymphatic endothelium under inflammation. In this sense, we describe the formation of ICAM-1 (CD54)-enriched three-dimensional structures on LEC/DC contacts, as these DCs adhere to inflamed skin lymphatic vessels and transmigrate into them. In vitro imaging revealed that under inflammation ICAM-1 accumulated on microvilli projections surrounding 60% of adhered DCs. In contrast, these structures were scarcely formed in noninflammatory conditions. Furthermore, ICAM-1-enriched microvilli were important in promoting DC transendothelial migration and DC crawling over the LEC surface. Microvilli formation was dependent on the presence of β-integrins on the DC side and on integrin conformational affinity to ligand. Finally, we observed that LEC microvilli structures appeared in close vicinity of CCL21 depots and that their assembly was partially inhibited by CCL21-neutralizing antibodies. Therefore, under inflammatory conditions, integrin ligands form three-dimensional membrane projections around DCs. These structures offer docking sites for DC transit from the tissue toward the lymphatic vessel lumen.


Toxicological Sciences | 2010

Repetitive Nicotine Exposure Leads to a More Malignant and Metastasis-Prone Phenotype of SCLC: A Molecular Insight into the Importance of Quitting Smoking during Treatment

Eva Martínez-García; Marta Irigoyen; Óscar González-Moreno; Leticia Corrales; Alvaro Teijeira; Elizabeth Salvo; Ana Rouzaut

Cigarette smoking is strongly correlated with the onset of lung cancer. Nicotine, a major component in cigarette smoke, has been found to promote tumor growth and angiogenesis, as well as protect cancer cells from apoptosis. Among all lung cancer cases, small cell lung cancer (SCLC) is found almost exclusively in smokers; metastasis and chemoresistance are the main reasons for the high mortality rates associated with SCLC. Retrospective studies have shown that patients with tobacco-related cancers who continue to smoke after their diagnosis display lower response rates and a shorter median survival compared with those who stop smoking. In the current work, we examined the effects of acute and repetitive exposure to nicotine, in the concentrations found in the lungs of active smokers, on the malignant properties of N417 SCLC cells in vitro. We observed that repetitive nicotine exposure induced a neuronal-like appearance in N417 cells along with increased adhesion to the extracellular matrix and chemoresistance. These changes were accompanied by enhanced migration through collagen matrices and adhesion to and transmigration across lymphatic endothelial cell monolayers. SCLC differentiation reverted after cessation of nicotine exposure. Here, we provide evidence for the leading role of the CXCR4/CXCL12 axis in these phenomena. Finally, we show how nicotine-differentiated N417 cells produced bigger and more vascularized tumors in mice, with lower apoptotic rates, than their nondifferentiated counterparts. In short, these findings identify the mechanisms through which nicotine increases SCLC malignancy and provide further evidence that CXCR4 is a potential anticancer target for nicotine-associated SCLC.

Collaboration


Dive into the Alvaro Teijeira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge