Alvaro Vianna Novaes de Carvalho Teixeira
Universidade Federal de Viçosa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Hotspot
Dive into the research topics where Alvaro Vianna Novaes de Carvalho Teixeira is active.
Publication
Featured researches published by Alvaro Vianna Novaes de Carvalho Teixeira.
Journal of Physical Chemistry B | 2010
Ana Clarissa dos Santos Pires; Nilda de Fátima Ferreira Soares; Luis Henrique Mendes da Silva; Maria C. Hespanhol da Silva; Aparecida Barbosa Mageste; Rêmili F. Soares; Alvaro Vianna Novaes de Carvalho Teixeira; Nélio José de Andrade
We report the synthesis of 10,12-pentacosadyinoic acid (PCDA) and PCDA + cholesterol (CHO) + sphingomyelin (SPH) vesicles dispersed in water and the determination of their colorimetric response induced by small amount of organic solvents. In the absence of solvent, PCDA and PCDA/CHO/SPH vesicles showed an intense blue color. The addition of CHCl(3), CH(2)Cl(2), and CCl(4) caused a colorimetric transition (CT) in both structures with the following efficiency: CHCl(3) > CH(2)Cl(2) ≅ CCl(4). However, CH(3)OH did not cause a blue-to-red transition. By microcalorimetric technique we also determined, for the first time, the enthalpy change associated with the CT process and the energy of interaction between solvent molecules and vesicle self-assembly. We observed that the chloride solvents induced a colorimetric transition, but the thermodynamic mechanism was different for each of them. CT induced by CHCl(3) was enthalpically driven, while that caused by CH(2)Cl(2) or CCl(4) was entropically driven.
Journal of Food Protection | 2012
Emiliane Andrade Araújo; Nélio José de Andrade; Luis Henrique Mendes da Silva; Patrícia Campos Bernardes; Alvaro Vianna Novaes de Carvalho Teixeira; João Paulo N. de Sá; José Felício Q. Fialho; Patrícia Érica Fernandes
Given the increasing number of antibiotic-resistant bacteria and the need to synthesize new antimicrobials, silver has attracted interest in the scientific community because of its recognized antimicrobial activity. This study aimed to evaluate the antimicrobial effects of silver nanoparticles (NP) obtained by a new method and tested at concentrations of 6 μg/ml and 60 μg/ml against the species Staphylococcus aureus, Listeria innocua, Salmonella Choleraesuis, Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus. The ability of these nanoparticles to remove or kill vegetative cells adhered to stainless steel surfaces was also evaluated. We observed that the NP obtained with the new method, concentrated silver nanoparticles (CNP), and silver nanoparticles with added sodium chloride (NPNaCl) had high antimicrobial activities (P < 0.05). We also verified that the most effective condition for the removal of P. aeruginosa cells on stainless steel coupons (10 by 10 mm) was immersion of the surfaces in CNP. The CNP treatment produced a 5-log reduction of the microbial population after 30 to 60 min of immersion. The CNP treatment also performed better than water and sodium carbonate, a compound commonly applied in clean-in-place procedures in the food industry, in removing adherent B. cereus cells from stainless steel cylinders. Therefore, these results suggest that NP synthesized by a new procedure may be used as antimicrobials in the food industry, for example, for the sanitization of utensils that come into contact with foods.
Physical Review E | 2003
Alvaro Vianna Novaes de Carvalho Teixeira; Isabelle Morfin; Françoise Ehrburger-Dolle; Cyrille Rochas; Erik Geissler; Pedro Licinio; Pierre Panine
Small angle neutron and x-ray scattering methods are used to investigate the structure of dilute suspensions of two different ferrofluid systems dispersed in soft polyacrylamide hydrogels. It is found that the particles in the fluid are fractal aggregates composed of smaller particles of radius ca. 5 nm. The fractal dimension is strongly dependent on sample, taking the value 1.7 in the first sample and 2.9 in the second sample. In the presence of a magnetic field the aggregates orient, but are restricted in both their translational and rotational freedom. The effect of the gel elasticity is treated as a hindrance to the orientation process.
Journal of Physical Chemistry B | 2010
Aparecida Mageste Barbosa; Igor José Boggione Santos; Guilherme Max Dias Ferreira; Maria do Carmo Hespanhol da Silva; Alvaro Vianna Novaes de Carvalho Teixeira; Luis Henrique Mendes da Silva
The effect of different ionic cosolutes (NaCl, Na(2)SO(4), Li(2)SO(4), NaSCN, Na(2)[Fe(CN)(5)NO], and Na(3)[Co(NO)(6)]) on the interaction between sodium dodecyl sulfate (SDS) and poly(ethylene oxide) (PEO) was examined by small-angle X-ray scattering (SAXS) and isothermal titration calorimetric techniques. The critical aggregation concentration values (cac), the saturation concentration (C(2)), the integral enthalpy change for aggregate formation (ΔH(agg)(int)) and the standard free energy change of micelle adsorption on the macromolecule chain (ΔΔG(agg)) were derived from the calorimetric titration curves. In the presence of 1.00 mmol L(-1) cosolute, no changes in the parameters were observed when compared with those obtained for SDS-PEO interactions in pure water. For NaCl, Na(2)SO(4), Li(2)SO(4), and NaSCN at 10.0 and 100 mmol L(-1), the cosolute presence lowered cac, increased C(2), and the PEO-SDS aggregate became more stable. In the presence of Na(2)[Fe(CN)(5)NO], the calorimetric titration curves changed drastically, showing a possible reduction in the PEO-SDS degree of interaction, possibility disrupting the formed nanostructure; however, the SAXS data confirmed, independent of the small energy observed, the presence of aggregates adsorbed on the polymer chain.
Materials Science and Engineering: C | 2015
Michele F. Oliveira; Diego F. Suárez; Júlio Cézar Barbosa Rocha; Alvaro Vianna Novaes de Carvalho Teixeira; Maria E. Cortés; Frederico B. De Sousa; Rubén D. Sinisterra
Herein, we used an electrospinning process to develop highly efficacious and hydrophobic coaxial nanofibers based on poly-cyclodextrin (polyCD) associated with poly(methacrylic acid) (PMAA) that combines polymeric and supramolecular features for modulating the release of the hydrophilic drug, propranolol hydrochloride (PROP). For this purpose, polyCD was synthesized and characterized, and its biocompatibility was assessed using fibroblast cytotoxicity tests. Moreover, the interactions between the guest PROP molecule and both polyCD and βCD were found to be spontaneous. Subsequently, PROP was encapsulated in uniaxial and coaxial polyCD/PMAA nanofibers. A lower PROP burst effect (reduction of approximately 50%) and higher modulation were observed from the coaxial than from the uniaxial fibers. Thus, the coaxial nanofibers could potentially be a useful strategy for developing a controlled release system for hydrophilic molecules.
Food Research International | 2014
Renata Silva Diniz; Jane Sélia dos Reis Coimbra; Alvaro Vianna Novaes de Carvalho Teixeira; Angélica Ribeiro da Costa; Igor José Boggione Santos; Gustavo Costa Bressan; Antonio Manuel da Cruz Rodrigues; Luiza Helena Meller da Silva
The study of protein interactions has generated great interest in the food industry. Therefore, research on new supramolecular structures shows promise. Supramolecular structures of the whey proteins α-lactalbumin and glycomacropeptide were produced under varying heat treatments (25 to 75°C) and acidic conditions (pH3.5 to 6.5). Isothermal titration calorimetry experiments showed protein interactions and demonstrated that this is an enthalpically driven process. Supramolecular protein structures in aqueous solutions were characterized by circular dichroism and intrinsic fluorescence spectroscopy. Additional photon correlation spectroscopy experiments showed that the size distribution of the structures ranged from 4 to 3545nm among the different conditions. At higher temperatures, lower pH increased particle size. The foamability of the supramolecular protein structures was evaluated. Analysis of variance and analysis of regression for foaming properties indicated that the two-factor interactions between pH and temperature exhibited a significant effect on the volume and stability of the foam.
Journal of Adhesion Science and Technology | 2013
Emiliane Andrade Araújo; Nélio José de Andrade; Luis Henrique Mendes da Silva; Patrícia Campos Bernardes; Alvaro Vianna Novaes de Carvalho Teixeira; José Felício Queiroz Fialho Júnior; João Paulo Natalino de Sá; Patrícia Érica Fernandes
The ability of silver nanoparticles to modify the thermodynamic characteristics of stainless steel surfaces in order to reduce the adhesion process and thereby inhibit biofilm formation was evaluated. We observed that silver nanoparticles were able to decrease the contact angle of stainless steel from 73.20° when conditioned with water to 12.10° making the surface more hydrophilic. Thus, the thermodynamics of adhesion for all the evaluated bacteria was more unfavorable when the stainless steel surfaces were conditioned with the nanoparticles. Regarding the bacteria, Staphylococcus aureus was the most hydrophilic (p < 0.05) followed for Escherichia coli, Pseudomonas aeruginosa, and Listeria innocua. Thereby, the silver nanoparticles demonstrated efficiency in inhibiting theoretical adhesion by altering the surface hydrophobicity that can potentially hamper cellular adhesion and prevent biofilm formation.
Journal of Physical Chemistry B | 2007
Alvaro Vianna Novaes de Carvalho Teixeira; Erik Geissler; Pedro Licinio
We present dynamic light scattering (DLS) measurements of soft poly(methyl-methacrylate) (PMMA) and polyacrylamide (PA) polymer gels prepared with trapped bodies (latex spheres or magnetic nanoparticles). We show that the anomalous diffusivity of the trapped particles can be analyzed in terms of a fractal Gaussian network gel model for the entire time range probed by DLS technique. This model is a generalization of the Rouse model for linear chains extended for structures with power law network connectivity scaling, which includes both percolating and uniform bulk gel limits. For a dilute dispersion of strongly scattering particles trapped in a gel, the scattered electric field correlation function at small wavevector ideally probes self-diffusion of gel portions imprisoning the particles. Our results show that the time-dependent diffusion coefficients calculated from the correlation functions change from a free diffusion regime at short times to an anomalous subdiffusive regime at long times (increasingly arrested displacement). The characteristic time of transition between these regimes depends on scattering vector as approximately q(-2), while the time decay power exponent tends to the value expected for a bulk network at small q. The diffusion curves for all scattering vectors and all samples were scaled to a single master curve.
Journal of Chemical Physics | 2017
Diego Lourençoni Ferreira; J. C. L. Sousa; R. N. Maronesi; Jefferson Bettini; Marco A. Schiavon; Alvaro Vianna Novaes de Carvalho Teixeira; Andreza Gonçalves da Silva
A new analytical expression for the size-dependent bandgap of colloidal semiconductor nanocrystals is proposed within the framework of the finite-depth square-well effective mass approximation in order to provide a quantitative description of the quantum confinement effect. This allows one to convert optical spectroscopic data (photoluminescence spectrum and absorbance edge) into accurate estimates for the particle size distributions of colloidal systems even if the traditional effective mass model is expected to fail, which occurs typically for very small particles belonging to the so-called strong confinement limit. By applying the reported theoretical methodologies to CdTe nanocrystals synthesized through wet chemical routes, size distributions are inferred and compared directly to those obtained from atomic force microscopy and transmission electron microscopy. This analysis can be used as a complementary tool for the characterization of nanocrystal samples of many other systems such as the II-VI and III-V semiconductor materials.
Food Research International | 2017
Camila Santiago Saraiva; Jane Sélia dos Reis Coimbra; Alvaro Vianna Novaes de Carvalho Teixeira; Eduardo Basílio de Oliveira; Reinaldo F. Teófilo; Angélica Ribeiro da Costa; Éverton de Almeida Alves Barbosa
Combination of β-lactoglobulin (β-Lg) and lactoferrin (Lf), biomacromolecules derived from bovine whey, was used in the formation of supramolecular structures by thermal gelation technique to adjust the pH. Furthermore, the influence of the molar ratio, temperature, pH, and heating time in the formation of supramolecular structures were also studied. The characterization of the protein supramolecular structures was performed using dynamic light scattering, zeta potential measurements, molecular spectrofluorimetry, and circular dichroism spectroscopy. The thermal behavior of the pure proteins was investigated by differential scanning calorimetry. The protein denaturation temperatures were of around 85°C for the β-Lg and around 52°C and 85°C (a small portion) for the Lf. The protein molar ratio of 2:1 Lf/β-Lg was used to form the structures, whose characterization showed that the best conditions of supramolecular structure formation occurred at pH6.5 and at temperatures of 62.5°C. In those conditions, more stable systems with reduced hydrophobic surface and average sizes between 30 and 100nm were generated. The correlation between pH and temperature suggests that the method of preparation of the supramolecular structure affects its size during storage.