Alvin C. Haver
Creighton University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alvin C. Haver.
Peptides | 2008
James E. Blevins; Prasanth K. Chelikani; Alvin C. Haver; Roger D. Reidelberger
Peptide YY (3-36) [PYY(3-36)] inhibits feeding in rodents, nonhuman primates and humans, yet the neural circuits underlying this action remain to be determined. Here we assessed whether PYY(3-36) inhibits feeding by activating neurons in forebrain and hindbrain sites containing Y2 receptors and linked to control of food intake, or in hindbrain sites immediately downstream of vagal afferent neurons. Rats received an anorexigenic dose of PYY(3-36), and the number of neurons expressing Fos, an indicator of neuronal activation, was determined in anterior hypothalamus (AH), arcuate nucleus (ARC), dorsomedial hypothalamus (DMH), lateral hypothalamus (LH), ventromedial hypothalamus (VMH), central nucleus of the amygdala (CeA), area postrema (AP), and caudal medial nucleus tractus solitarius (cmNTS), commissural NTS (cNTS), and gelatinosus NTS (gNTS). Expression of tyrosine hydroxylase (TH), an indicator of catecholamine synthesis, was also measured in the cmNTS. PYY(3-36) increased Fos in ARC, cmNTS, gNTS and AP. Approximately 10% of Fos+ neurons in the cmNTS were TH+. These results suggest that PYY(3-36) inhibits feeding through direct activation of ARC neurons, and direct and/or indirect activation via vagal afferent nerves of cmNTS, gNTS and AP, including some catecholaminergic neurons in the cmNTS.
Diabetes | 2006
Prasanth K. Chelikani; Alvin C. Haver; Roger D. Reidelberger
Ghrelin stimulates, while glucagon-like peptide-1 (GLP-1) and peptide YY(3-36) [PYY(3-36)] inhibit, food intake and gastric emptying in rats. We determined the dose-dependent effects of a 3-h intravenous infusion of ghrelin at dark onset on food intake in freely feeding rats, and on the inhibitory effects of intravenous infusion of GLP-1 and PYY(3-36) on food intake and gastric emptying. Ghrelin (150 pmol · kg−1 · min−1) stimulated food intake by 28% during the infusion period primarily by increasing meal frequency; doses of 15 and 50 pmol · kg−1 · min−1 had no effect. GLP-1 (15 pmol · kg−1 · min−1) inhibited food intake by 35–54%; coinfusion of ghrelin at 50 and 150 pmol · kg−1 · min−1 attenuated this effect by 60 and 64%, respectively. PYY(3-36) (15 pmol · kg−1 · min−1) inhibited food intake by 32%; ghrelin at 15 and 50 pmol · kg−1 · min−1 attenuated this effect by 54 and 74%, respectively. A 20-min intravenous infusion of ghrelin (15–150 pmol · kg−1 · min−1) attenuated GLP-1–and PYY(3-36)-induced inhibition of gastric emptying of saline by 6–29%. Thus, intravenous infusion of ghrelin during the early dark period stimulates food intake in freely feeding rats by increasing meal frequency, and similar doses of ghrelin attenuate gastric emptying and feeding responses to GLP-1 and PYY(3-36). These results suggest that ghrelin may stimulate food intake in part by attenuating the inhibitory effects of GLP-1 and PYY(3-36) on gastric emptying and food intake.
Obesity | 2011
Roger D. Reidelberger; Alvin C. Haver; Bettye A. Apenteng; Krista L. Anders; Sharalyn Steenson
Significant weight loss following Roux‐en‐Y gastric bypass surgery (RYGB) in obese humans correlates with enhanced secretion of anorexigenic gut hormones glucagon‐like peptide‐1 (GLP‐1) and peptide YY3–36 (PYY3–36). Our aim here was to identify a dosing strategy for intraperitoneal (IP) infusion of GLP‐1 homologue exendin‐4 alone and with PYY3–36 that produces a sustained reduction in daily food intake and body weight in diet‐induced obese (DIO) rats. We tested 12 exendin‐4 strategies over 10 weeks. Exendin‐4 infused during the first and last 3 h of the dark period at 15–20 pmol/h (0.15 nmol/kg/day) produced a sustained 24 ± 1% reduction in daily food intake for 17 days, and decreased body weight by 7%. In a separate group of DIO rats, none of seven dosing strategies combining exendin‐4 and PYY3–36 produced a similar reduction in daily food intake for >10 days. The subsequent decline in efficacies of exendin‐4 alone and with PYY3–36 on food intake and body weight in each experiment suggested possible receptor downregulation and tolerance to treatments. However, when treatments were discontinued for 1 day following losses in efficacies, daily food intake significantly increased. Together, these results demonstrate that (i) intermittent IP infusion of a low dose of exendin‐4 can produce a relatively prolonged reduction in daily food intake and body weight in DIO rats, (ii) co‐infusion of exendin‐4 and PYY3–36 does not further prolong this response, and (iii) activation of an orexigenic mechanism gradually occurs to counteract the inhibitory effects of exendin‐4 alone and with PYY3–36 on food intake and body weight.
Peptides | 2006
Prasanth K. Chelikani; Alvin C. Haver; Roger D. Reidelberger
We used a conditioned taste aversion test to assess whether PYY(3-36) reduces food intake by producing malaise. Two-hour IV infusion of PYY(3-36) (8, 15, and 30 pmol/kg/min) at dark onset in non-food-deprived rats produced a dose-dependent inhibition of feeding and a conditioned aversion to the flavored chow paired with PYY(3-36) infusion. In food-deprived rats, PYY(3-36) at 2 and 4 pmol/kg/min inhibited intake of a flavored saccharin solution without producing conditioned taste aversion, whereas higher doses (8 and 15 pmol/kg/min) inhibited saccharin intake and produced taste aversion. These results suggest that anorexic doses of PYY(3-36) may produce a dose-dependent malaise in rats, which is similar to that reported for PYY(3-36) infusion in humans. Previous studies have shown that PYY(3-36) potently inhibits gastric emptying, and that gut distention can produce a conditioned taste aversion. Thus, PYY(3-36) may produce conditioned taste aversion in part by slowing gastric emptying.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008
Roger D. Reidelberger; Alvin C. Haver; Prasanth K. Chelikani; James L. Buescher
Chronic administration of anorexigenic substances to experimental animals by injections or continuous infusion typically produces either no effect or a transient reduction in food intake and body weight. Our aim here was to identify an intermittent dosing strategy for intraperitoneal infusion of peptide YY(3-36) [PYY(3-36)] that produces a sustained reduction in daily food intake and adiposity in diet-induced obese rats. Rats (665+/-10 g body wt, 166+/-7 g body fat) with intraperitoneal catheters tethered to infusion swivels had free access to a high-fat diet. Vehicle-treated rats (n=23) had relatively stable food intake, body weight, and adiposity during the 9-wk test period. None of 15 PYY(3-36) dosing regimens administered in succession to a second group of rats (n=22) produced a sustained 15-25% reduction in daily food intake for >5 days, although body weight and adiposity were reduced across the 9-wk period by 12% (594+/-15 vs. 672+/-15 g) and 43% (96+/-7 vs. 169+/-9 g), respectively. The declining inhibitory effect of PYY(3-36) on daily food intake when the interinfusion interval was >or=3 h appeared to be due in part to an increase in food intake between infusions. The declining inhibitory effect of PYY(3-36) on daily food intake when the interinfusion interval was <3 h suggested possible receptor downregulation and tolerance to frequent PYY(3-36) administration; however, food intake significantly increased when PYY(3-36) treatments were discontinued for 1 day following apparent loss in treatment efficacies. Together, these results demonstrate the development of a potent homeostatic response to increase food intake when PYY(3-36) reduces food intake and energy reserves in diet-induced obese rats.
American Journal of Physiology-endocrinology and Metabolism | 2012
Roger D. Reidelberger; Alvin C. Haver; Prasanth K. Chelikani; Bettye A. Apenteng; Curtis Perriotte-Olson; Krista L. Anders; Sharalyn Steenson; James E. Blevins
Weight loss in obese humans produces a relative leptin deficiency, which is postulated to activate potent orexigenic and energy conservation mechanisms to restrict weight loss and promote weight regain. Here we determined whether leptin replacement alone or with GLP-1 receptor agonist exendin-4 attenuates weight regain or promotes greater weight loss in weight-reduced diet-induced obese (DIO) rats. Forty percent restriction in daily intake of a high-fat diet in DIO rats for 4 wk reduced body weight by 12%, body fat by 29%, and plasma leptin by 67% and normalized leptin sensitivity. When food restriction ended, body weight, body fat, and plasma leptin increased rapidly. Daily administration of leptin [3-h intraperitoneal (ip) infusions (4 nmol·kg(-1)·h(-1))] at onset and end of dark period for 3 wk did not attenuate hyperphagia and weight regain, nor did it affect mean daily meal sizes or meal numbers. Exendin-4 (50 pmol·kg(-1)·h(-1)) infusions during the same intervals prevented postrestriction hyperphagia and weight regain by normalizing meal size. Coadministration of leptin and exendin-4 did not reduce body weight more than exendin-4 alone. Instead, leptin began to attenuate the inhibitory effects of exendin-4 on food intake, meal size, and weight regain by the end of the second week of administration. Plasma leptin in rats receiving leptin was sevenfold greater than in rats receiving vehicle and 17-fold greater than in rats receiving exendin-4. Together, these results do not support the hypothesis that leptin replacement alone or with exendin-4 attenuates weight regain or promotes greater weight loss in weight-reduced DIO rats.
American Journal of Physiology-endocrinology and Metabolism | 2013
Roger D. Reidelberger; Alvin C. Haver; Prasanth K. Chelikani
Peptide YY(3-36) [PYY(3-36)] is postulated to act as a hormonal signal from gut to brain to inhibit food intake. PYY(3-36) potently reduces food intake when administered systemically or into the brain. If action of endogenous PYY(3-36) is necessary for normal satiation to occur, then pharmacological blockade of its receptors should increase food intake. Here, we determined the effects of iv infusion of Y1, Y2, and Y5 receptor antagonists (BIBP 3226, BIIE 0246, CGP 71683) during the first 3 h of the dark period on food intake in non-food-deprived rats. Our results showed that 1) Y2 receptor blockade reversed the anorexic response to iv infusion of PYY(3-36) but did not increase food intake when administered alone; 2) Y1 and Y5 receptor antagonists neither attenuated PYY(3-36)-induced anorexia nor altered food intake when given alone; and 3) Y2 receptor blockade attenuated anorexic responses to gastric infusions of casein hydrolysate and long-chain triglycerides, but not maltodextrin. Previous work showed that Y2 antagonist BIIE 0246 does not penetrate the blood-brain barrier. Together, these results support the hypothesis that gut PYY(3-36) action at Y2 receptors peripheral to the blood brain barrier plays an essential role in mediating satiety responses to gastric delivery of protein and long-chain triglycerides, but not polysaccharide.
American Journal of Physiology-endocrinology and Metabolism | 2014
Roger D. Reidelberger; Alvin C. Haver; Krista L. Anders; Bettye A. Apenteng
Cholecystokinin (CCK)-induced suppression of feeding is mediated by vagal sensory neurons that are destroyed by the neurotoxin capsaicin (CAP). Here we determined whether CAP-sensitive neurons mediate anorexic responses to intravenous infusions of gut hormones peptide YY-(3-36) [PYY-(3-36)] and glucagon-like peptide-1 (GLP-1). Rats received three intraperitoneal injections of CAP or vehicle (VEH) in 24 h. After recovery, non-food-deprived rats received at dark onset a 3-h intravenous infusion of CCK-8 (5, 17 pmol·kg⁻¹·min⁻¹), PYY-(3-36) (5, 17, 50 pmol·kg⁻¹·min⁻¹), or GLP-1 (17, 50 pmol·kg⁻¹·min⁻¹). CCK-8 was much less effective in reducing food intake in CAP vs. VEH rats. CCK-8 at 5 and 17 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 39 and 71% in VEH rats and 7 and 18% in CAP rats. In contrast, PYY-(3-36) and GLP-1 were similarly effective in reducing food intake in VEH and CAP rats. PYY-(3-36) at 5, 17, and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 15, 33, and 70% in VEH rats and 13, 30, and 33% in CAP rats. GLP-1 at 17 and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 48 and 60% in VEH rats and 30 and 52% in CAP rats. These results suggest that anorexic responses to PYY-(3-36) and GLP-1 are not primarily mediated by the CAP-sensitive peripheral sensory neurons (presumably vagal) that mediate CCK-8-induced anorexia.
Regulatory Peptides | 2010
David A. Keire; Julian P. Whitelegge; Puneet Souda; Kym F. Faull; Sara Bassilian; Roger D. Reidelberger; Alvin C. Haver; Joseph R. Reeve
We measured molecular forms of PYY in the distal half of rat small intestine using a new method for tissue extraction, three sequential reverse phase chromatography steps, and PYY radioimmunoassay and mass spectrometry to measure their levels. The extraction method called RAPID, developed to minimize artifactual degradation of PYY during tissue extraction and sample preparation, uses Reduced temperature, Acidified buffer, Peptidase inhibitors, Isotopically enriched mass spectrometry standards, and Dilution to inhibit and monitor endogenous peptide degradation during tissue processing. Synthetic peptides [PYY(1-36)-NH(2), PYY(3-36)-NH(2), PYY(1-36)-Gly-OH, and PYY(3-36)-Gly-OH] selectively enriched with (13)C(3)-alanine were added as internal standards to the extraction buffer. By collecting mass spectra rather than multiple-reaction-monitoring (MRM) profiles, we simultaneously screen for any PYY forms that were present in the immunoreactive fractions. PYY(1-36)-NH(2), PYY(3-36)-NH(2), PYY(1-36)-Gly-OH, and PYY(3-36)-Gly-OH were identified and quantified at 64.3±4.5, 6.1±0.9, 0.9±0.1, and <0.3pmol/g of tissue, respectively (n=3). Thus, we found that in rat distal small intestine proPYY is processed to PYY(1-36)-NH(2) with little conversion to PYY(3-36)-NH(2). These data suggest that production of PYY(3-36)-NH(2) (a form with greater potency than PYY(1-36)-NH(2) for inhibition of feeding and gastric emptying) occurs after the peptide leaves its cell of synthesis by enzymatic action in the circulation.
Tetrahedron Letters | 1993
Alvin C. Haver; D. David Smith
Abstract The Izumiya tripeptide was used to assess racemization in solid-phase fragment condensations. Boc-Gly-Ala-OH 1 was coupled to Leu-PAM resin DIC in a variety of solvents, both with and without HOBt. After cleavage from the resin, the extent of racemization was determined using C18 RP-HLPC to separate the epimers. Solvents used were DMF, NMP, TFE and each of these as mixtures with DCM. Also tested was a mixture of NMP and DMSO (85:15). Couplings in DMF/DCM (1:1) and NMP/DCM (1:1) in the presence of HOBt were in excess of 98% and racemization was undetectable. (