Alvin Kuriakose Thomas
Dresden University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alvin Kuriakose Thomas.
PLOS ONE | 2015
Caghan Kizil; Anne Iltzsche; Alvin Kuriakose Thomas; Prabesh Bhattarai; Yixin Zhang; Michael Brand
Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs) that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI), RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs) and identified two– polyR and Trans – that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael’s addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues.
Neurogenesis (Austin, Tex.) | 2017
Prabesh Bhattarai; Alvin Kuriakose Thomas; Yixin Zhang; Caghan Kizil
ABSTRACT Alzheimer disease is the most prevalent neurodegenerative disease and is associated with aggregation of Amyloid-β42 peptides. In mammals, Amyloid-β42 causes impaired neural stem/progenitor cell (NSPC) proliferation and neurogenesis, which exacerbate with aging. The molecular programs necessary to enhance NSPC proliferation and neurogenesis in our brains to mount successful regeneration are largely unknown. Therefore, to identify the molecular basis of effective brain regeneration, we previously established an Amyloid-β42 model in adult zebrafish that displayed Alzheimer-like phenotypes reminiscent of humans. Interestingly, zebrafish exhibited enhanced NSPC proliferation and neurogenesis after microinjection of Amyloid-β42 peptide. Here, we compare old and young fish to address the effects of aging on regenerative ability after Amyloid-β42 deposition. We found that aging does not affect the rate of NSPC proliferation but reduces the neurogenic response and microglia/macrophage activation after microinjection of Amyloid-β42 in zebrafish, suggesting an important link between aging, neuroinflammation, regenerative neurogenesis and neural stem cell plasticity.
Advanced Materials | 2018
Robert Wieduwild; Richard Wetzel; Dejan Husman; Sophie Bauer; Iman El-Sayed; Sarah Duin; Priyanka Murawala; Alvin Kuriakose Thomas; Manja Wobus; Martin Bornhäuser; Yixin Zhang
Combinatorial screening represents a promising strategy to discover biomaterials for tailored cell culture applications. Although libraries incorporating different biochemical cues have been investigated, few simultaneously recapitulate relevant biochemical, physical, and dynamic features of the extracellular matrix (ECM). Here, a noncovalent system based on liquid-liquid phase separation (coacervation) and gelation mediated by glycosaminoglycan (GAG)-peptide interactions is reported. Multiple biomaterial libraries are generated using combinations of sulfated glycosaminoglycans and poly(ethylene glycol)-conjugated peptides. Screening these biomaterials reveals preferred biomatrices for the attachment of six cell types, including primary mesenchymal stromal cells (MSCs) and primary neural precursor cells (NPCs). Incorporation of GAGs sustains the expansion of all tested cell types comparable to standard cell culture surfaces, while osteogenic differentiation of MSC and neuronal differentiation of NPC are promoted on chondroitin and heparan biomatrices, respectively. The presented noncovalent system provides a powerful tool for developing tissue-specific ECM mimics.
bioRxiv | 2017
Christos Papadimitriou; Mehmet Ilyas I Cosacak; Violeta Mashkaryan; Hilal Celikkaya; Laura J. Bray; Prabesh Bhattarai; Heike Hollak; Xin Chen; Shuijin He; Christopher L. Antos; Alvin Kuriakose Thomas; Jens Friedrichs; Andreas Dahl; Yixin Zhang; Uwe Freudenberg; Carsten Werner; Caghan Kizil
Three-dimensional models of human neural development and neurodegeneration are crucial when exploring stem-cell-based regenerative therapies in a tissue-mimetic manner. However, existing 3D culture systems are not sufficient to model the inherent plasticity of NSCs due to their ill-defined composition and lack of controllability of the physical properties. Adapting a glycosaminoglycan-based, cell-responsive hydrogel platform, we stimulated primary and induced human neural stem cells (NSCs) to manifest neurogenic plasticity and form extensive neuronal networks in vitro. The 3D cultures exhibited neurotransmitter responsiveness, electrophysiological activity, and tissue-specific extracellular matrix (ECM) deposition. By whole transcriptome sequencing, we identified that 3D cultures express mature neuronal markers, and reflect the in vivo make-up of mature cortical neurons compared to 2D cultures. Thus, our data suggest that our established 3D hydrogel culture supports the tissue-mimetic maturation of human neurons. We also exemplarily modeled neurodegenerative conditions by treating the cultures with Aβ42 peptide and observed the known human pathological effects of Alzheimer’s disease including reduced NSC proliferation, impaired neuronal network formation, synaptic loss and failure in ECM deposition as well as elevated Tau hyperphosphorylation and formation of neurofibrillary tangles. We determined the changes in transcriptomes of primary and induced NSC-derived neurons after Aβ42, providing a useful resource for further studies. Thus, our hydrogel-based human cortical 3D cell culture is a powerful platform for studying various aspects of neural development and neurodegeneration, as exemplified for Aβ42 toxicity and neurogenic stem cell plasticity. Significance Neural stem cells (NSC) are reservoir for new neurons in human brains, yet they fail to form neurons after neurodegeneration. Therefore, understanding the potential use of NSCs for stem cell-based regenerative therapies requires tissue-mimetic humanized experimental systems. We report the adaptation of a 3D bio-instructive hydrogel culture system where human NSCs form neurons that later form networks in a controlled microenvironment. We also modeled neurodegenerative toxicity by using Amyloid-beta4 peptide, a hallmark of Alzheimer’s disease, observed phenotypes reminiscent of human brains, and determined the global gene expression changes during development and degeneration of neurons. Thus, our reductionist humanized culture model will be an important tool to address NSC plasticity, neurogenicity, and network formation in health and disease.
Journal of Visualized Experiments | 2017
Prabesh Bhattarai; Alvin Kuriakose Thomas; Mehmet Ilyas Cosacak; Christos Papadimitriou; Violeta Mashkaryan; Yixin Zhang; Caghan Kizil
Alzheimers disease (AD) is a debilitating neurodegenerative disease in which accumulation of toxic amyloid-β42 (Aβ42) peptides leads to synaptic degeneration, inflammation, neuronal death, and learning deficits. Humans cannot regenerate lost neurons in the case of AD in part due to impaired proliferative capacity of the neural stem/progenitor cells (NSPCs) and reduced neurogenesis. Therefore, efficient regenerative therapies should also enhance the proliferation and neurogenic capacity of NSPCs. Zebrafish (Danio rerio) is a regenerative organism, and we can learn the basic molecular programs with which we could design therapeutic approaches to tackle AD. For this reason, the generation of an AD-like model in zebrafish was necessary. Using our methodology, we can introduce synthetic derivatives of Aβ42 peptide with tissue penetrating capability into the adult zebrafish brain, and analyze the disease pathology and the regenerative response. The advantage over the existing methods or animal models is that zebrafish can teach us how a vertebrate brain can naturally regenerate, and thus help us to treat human neurodegenerative diseases better by targeting endogenous NSPCs. Therefore, the amyloid-toxicity model established in the adult zebrafish brain may open new avenues for research in the field of neuroscience and clinical medicine. Additionally, the simple execution of this method allows for cost-effective and efficient experimental assessment. This manuscript describes the synthesis and injection of Aβ42 peptides into zebrafish brain.
bioRxiv | 2018
Helena Andrade; Alvin Kuriakose Thomas; Weilin Lin; Francesco Reddavide; Yixin Zhang
The study of any population of large size and high diversity is limited by the lack of data and associated insights. For a pool of individuals, each associated with a unique characteristic feature, as the pool size grows, the possible interactions increase exponentially, quickly beyond the scope of computation, not to mention experimental manipulation and analysis. Herein, we report a facile RT-PCR-based method, to correlate the amplification curves with various DNA libraries of defined diversity, and perform operations with groups of quaternary numbers as input and diversity as output. An attractive feature of this approach is the possibility of realizing parallel computation with an eventually unlimited number of variables. We demonstrate that DNA libraries can be used to model heterogeneous populations, exhibiting functions such as self-protection, subjected to biased expansion, and to evolve into complex structures. Moreover, the method can be applied to drug discovery using DNA-encoded chemical library (DECL) technology, to optimize selection conditions for identifying potent and specific bio-molecular interactions.
ACS Applied Materials & Interfaces | 2018
Alvin Kuriakose Thomas; Robert Wieduwild; Ralf Zimmermann; Weilin Lin; Jens Friedrichs; Marc Bickle; Karim Fahmy; Carsten Werner; Yixin Zhang
We investigated the utility of a heparin/peptide-polyethylene glycol conjugate system to build layer-by-layer (LbL) structures, to assemble tailored multilayer-biomatrices for cell culture. The LbL assembly balances the advantages of polyelectrolyte systems and protein-based systems. Human umbilical vein endothelial cells showed distinct responses to the film thickness and structure; the presence, density, and spatial arrangement of a cell adhesion ligand within the nanothin film; and the pretreatment of the film with morphogens. The LbL technique presents a versatile tool for modifying cell culture substrates with defined and diverse biochemical and structural features, for investigating cell-material interactions.
ACS Applied Materials & Interfaces | 2018
Yong Xu; Xuegeng Yang; Alvin Kuriakose Thomas; Panagiotis A. Patsis; Thomas Kurth; Martin Kräter; Kerstin Eckert; Martin Bornhäuser; Yixin Zhang
Cross-linking biomolecules with electroconductive nanostructures through noncovalent interactions can result in modular networks with defined biological functions and physical properties such as electric conductivity and viscoelasticity. Moreover, the resulting matrices can exhibit interesting features caused by the dynamic assembly process, such as self-healing and molecular ordering. In this paper, we present a physical hydrogel system formed by mixing peptide-polyethylene glycol and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate. This combinatorial approach, which uses different modular building blocks, could lead to high tunability on aspects of rheology and electrical impedance. The proposed physical hydrogel system is characterized by both a self-healing ability and injectability. Interestingly, the formation of hydrogels at relatively low concentrations led to a network of closer molecular packing of poly(3,4-ethylenedioxythiophene) nanoparticles, reflected by the enhanced conductivity. The biopolymer system can be used to develop three-dimensional cell cultures with incorporated electric stimuli, as evidenced by its contribution to the survival and proliferation of encapsulated mesenchymal stromal cells and their differentiation upon electrical stimulation.
bioRxiv | 2017
Christos Papadimitriou; Hilal Celikkaya; Mehmet Ilyas I Cosacak; Violeta Mashkaryan; Prabesh Bhattarai; Weilin Lin; Alvin Kuriakose Thomas; Yixin Zhang; Uwe Freudenberg; Carsten Werner; Caghan Kizil
The immune response is an important determinant of the plasticity and neurogenic capacity of neural stem cells (NSCs) upon amyloid-beta42 (Aβ42) toxicity in Alzheimer’s disease (AD). However, the direct effects of individual immuno-modulatory effectors on NSC plasticity remain to be elucidated and are the motivation for reductionist tissue-mimetic culture experiments. Using starPEG-Heparin hydrogel system that provides a defined 3D cell-instructive neuro-microenvironment culture system, sustains high levels of proliferative and neurogenic activity of human NSCs, and recapitulates the fundamental pathological consequences of Amyloid toxicity upon Aβ42 administration, we found that the anti-inflammatory cytokine interleukin-4 (IL4) restores the plasticity and neurogenic capacity of NSCs by suppressing the Aβ42-induced kynurenic acid-producing enzyme kynurenine aminotransferase 2 (KAT2), which we also found to be upregulated in the brains of the AD model, APP/PS1dE9 mouse. Our transcriptome analyses showed that IL4 treatment restores the expression levels of NSC and cortical subtype markers. Thus, our dissective neuro-microenvironment culture revealed IL4-mediated neuroinflammatory crosstalk for human NSC plasticity and predicted a new mechanistic target for therapeutic intervention in AD.
Cell Reports | 2016
Prabesh Bhattarai; Alvin Kuriakose Thomas; Mehmet Ilyas Cosacak; Christos Papadimitriou; Violeta Mashkaryan; Cynthia Froc; Susanne Reinhardt; Thomas Kurth; Andreas Dahl; Yixin Zhang; Caghan Kizil