Alyson Fox
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alyson Fox.
Neuron | 2001
Valerie Schuler; Christian Lüscher; Christophe Blanchet; Norman Klix; Gilles Sansig; Klaus Klebs; Markus Schmutz; Jakob Heid; Clive Gentry; Laszlo Urban; Alyson Fox; Will Spooren; Anne-Lise Jaton; Jean-Marie Vigouret; Mario F. Pozza; Peter H. Kelly; Johannes Mosbacher; Wolfgang Froestl; Edgar Käslin; Reinhard Korn; Serge Bischoff; Klemens Kaupmann; Herman van der Putten; Bernhard Bettler
GABA(B) (gamma-aminobutyric acid type B) receptors are important for keeping neuronal excitability under control. Cloned GABA(B) receptors do not show the expected pharmacological diversity of native receptors and it is unknown whether they contribute to pre- as well as postsynaptic functions. Here, we demonstrate that Balb/c mice lacking the GABA(B(1)) subunit are viable, exhibit spontaneous seizures, hyperalgesia, hyperlocomotor activity, and memory impairment. Upon GABA(B) agonist application, null mutant mice show neither the typical muscle relaxation, hypothermia, or delta EEG waves. These behavioral findings are paralleled by a loss of all biochemical and electrophysiological GABA(B) responses in null mutant mice. This demonstrates that GABA(B(1)) is an essential component of pre- and postsynaptic GABA(B) receptors and casts doubt on the existence of proposed receptor subtypes.
European Journal of Neuroscience | 2001
L. J. Hudson; Stuart Bevan; Glen Wotherspoon; Clive Gentry; Alyson Fox; Janet Winter
Changes in phenotype or connectivity of primary afferent neurons following peripheral nerve injury may contribute to the hyperalgesia and allodynia associated with neuropathic pain conditions. Although earlier studies using partial nerve injury models have focused on the role of damaged fibres in the generation of ectopic discharges and pain, it is now thought that remaining undamaged fibres may be equally important. We have examined the expression of the sensory neuron‐specific cation channel Vanilloid Receptor 1 (VR1), an important transducer of noxious stimuli, in three models of nerve injury in the rat, using anatomical separation or fluorescent retrograde tracers to identify damaged or undamaged sensory neurons. After total or partial sciatic nerve transection, or spinal nerve ligation, VR1‐immunoreactivity (IR) was significantly reduced in the somata of all damaged dorsal root ganglion (DRG) neuronal profiles, compared to controls. However, after partial transection or spinal nerve ligation, VR1 expression was greater in the undamaged DRG somata than in controls. Unexpectedly, after L5 spinal nerve ligation, VR1‐IR of the A‐fibre somata increased ≈ 3‐fold in the uninjured L4 DRG compared to controls; a much greater increase than seen in the somata with C‐fibres. Furthermore, we found that VR1‐IR persisted in the transected sciatic nerve proximal to the lesion, despite its down‐regulation in the damaged neuronal somata. This persistence in the nerve proximal to the lesion after nerve section, together with increased VR1 in DRG neurons left undamaged after partial nerve injury, may be crucial to the development or maintenance of neuropathic pain.
Pain | 2001
Alyson Fox; Adam Kesingland; Clive Gentry; Kara McNair; Sadhana Patel; Laszlo Urban; Iain F. James
&NA; We have examined the effects of cannabinoid agonists on hyperalgesia in a model of neuropathic pain in the rat and investigated the possible sites of action. The antihyperalgesic activity of the cannabinoids was compared with their ability to elicit behavioural effects characteristic of central cannabinoid activity. WIN55,212‐2 (0.3–10 mg kg−1), CP‐55,940 (0.03–1 mg kg−1) and HU‐210 (0.001–0.03 mg kg−1) were all active in a ‘tetrad’ of tests consisting of tail‐flick, catalepsy, rotarod and hypothermia following subcutaneous administration, with a rank order of potency in each of HU‐210>CP‐55,940>WIN55,212‐2. The effects of WIN55,212‐2 in each assay were blocked by the Cannabinoid1 (CB1) antagonist SR141716A. In the partial sciatic ligation model of neuropathic pain WIN55,212‐2, CP‐55,940 and HU‐210 produced complete reversal of mechanical hyperalgesia within 3 h of subcutaneous administration with D50 values of 0.52, 0.08 and 0.005 mg kg−1, respectively. In this model WIN55,212‐2 was also effective against thermal hyperalgesia and mechanical allodynia. WIN55,212‐2 produced pronounced reversal of mechanical hyperalgesia following intrathecal administration that was blocked by the CB1 antagonist SR141716A. Following intraplantar administration into the ipsilateral hindpaw, WIN55,212‐2 produced up to 70% reversal of mechanical hyperalgesia, although activity was also observed at high doses following injection into the contralateral paw. The antihyperalgesic effect of WIN55,212‐2 injected into the ipsilateral paw was blocked by subcutaneously administered SR141716A, but was not affected by intrathecally administered SR141716A. These data show that cannabinoids are highly potent and efficacious antihyperalgesic agents in a model of neuropathic pain. This activity is likely to be mediated via an action in both the CNS and in the periphery.
Pain | 2004
Janet Fernihough; Clive Gentry; Marzia Malcangio; Alyson Fox; John Rediske; Theodore C. Pellas; Bruce L. Kidd; Stuart Bevan; Janet Winter
Abstract Osteoarthritis (OA) is a major healthcare burden, with increasing incidence. Pain is the predominant clinical feature, yet therapy is ineffective for many patients. While there are considerable insights into the mechanisms underlying tissue remodelling, there is poor understanding of the link between disease pathology and pain. This is in part owing to the lack of animal models that combine both osteoarthritic tissue remodelling and pain. Here, we provide an analysis of pain related behaviours in two models of OA in the rat: partial medial meniscectomy and iodoacetate injection. Histological studies demonstrated that in both models, progressive osteoarthritic joint pathology developed over the course of the next 28 days. In the ipsilateral hind limb in both models, changes in the percentage bodyweight borne were small, whereas marked mechanical hyperalgesia and tactile allodynia were seen. The responses in the iodoacetate treated animals were generally more robust, and these animals were tested for pharmacological reversal of pain related behaviour. Morphine was able to attenuate hyperalgesia 3, 14 and 28 days after OA induction, and reversed allodynia at days 14 and 28, providing evidence that this behaviour was pain related. Diclofenac and paracetamol were effective 3 days after arthritic induction only, coinciding with a measurable swelling of the knee. Gabapentin varied in its ability to reverse both hyperalgesia and allodynia. The iodoacetate model provides a basis for studies on the mechanisms of pain in OA, and for development of novel therapeutic analgesics.Abbreviations: OA: osteoarthritis; DRGs: dorsal root ganglia; NSAIDs: non‐steroidal anti‐inflammatory drugs; PWT: paw withdrawal thresholds; p.o.: orally; s.c.: sub cutaneously.
Nature Medicine | 1996
Alyson Fox; Umesh G. Lalloo; Maria G. Belvisi; Micaela Bernareggi; K. Fan Chung; Peter J. Barnes
Cough accompanied by an increased sensitivity of the cough reflex is the most common symptom of inflammatory airway disease1,5. This symptom is also frequently reported in patients receiving angiotensin–converting enzyme (ACE) inhibitors as therapy for heart failure or hypertension2–4, although the underlying mechanism is unknown. We have investigated the possibility that the inflammatory peptide bradykinin, normally degraded by ACE, causes sensitization of airway sensory nerves and an enhancement of the cough reflex in conscious guinea pigs. Treatment of guinea pigs for two weeks with captopril led to an increased cough response to inhaled citric acid, which was prevented by concomitant treatment with the bradykinin receptor antagonist icatibant. A similar icatibant–sensitive enhancement of citric acid–evoked cough was seen in untreated animals after prior inhalation of bradykinin, although cough evoked by hypertonic saline was unaffected. In electrophysiological studies performed in vitro, responses of single vagal C fibers to capsaicin, applied to receptive fields of single–fiber units in the trachea, were also markedly increased after perfusion with bradykinin, whereas Aδ fiber responses to hypertonic saline were unaffected. These results indicate that bradykinin–evoked sensitization of airway sensory nerves may underlie the pathogenesis of ACE–inhibitor cough. Bradykinin receptor antagonists may be of benefit in treating chronic cough seen with this and other inflammatory conditions.
Neuroscience | 2005
Glen Wotherspoon; Alyson Fox; Peter McIntyre; Sian Colley; Stuart Bevan; Janet Winter
We have localized cannabinoid receptor 2 protein in rat and mouse somatic sensory nervous system, using an antibody that recognizes mouse cannabinoid receptor 2. Little or no cannabinoid receptor 2 immunoreactivity was found in sections of naive rat or mouse dorsal root ganglia or spinal cord. This was in accord with the lack of detectable cannabinoid receptor 2 mRNA in (dorsal root ganglion) neurons by in situ hybridization experiments described in the literature. However, we could detect cannabinoid receptor 2 immunoreactivity following unilateral nerve damage-either by sciatic nerve section, or by spinal nerve ligation. It was localized to the superficial laminae of the dorsal horn of the spinal cord, ipsilateral to the nerve damage, coincident with the area of termination of damaged afferents which was marked by loss of isolectin B4 binding. This upregulation was not seen in cannabinoid receptor 2 null mice. The cannabinoid receptor 2 protein in spinal cord appeared to be expressed on sensory neuron afferent terminals as it colocalized with two markers of damaged afferents, namely growth associated protein-43 and the neuropeptide galanin. Moreover, it did not colocalize with markers of activated microglial cells (OX-42) or astroglial cells (glial fibrillary acidic protein) in rat spinal cord. In the peripheral nerve, accumulation of cannabinoid receptor 2 immunoreactivity was seen in nerve sections proximal, but not distal, to the ligation site, suggesting transport down the nerve from the cell bodies. Although convincing cannabinoid receptor 2 immunoreactivity was seen in neither uninjured nor injured dorsal root ganglion neuron cell bodies in tissue sections, expression was detectable in isolated, cultured neurons that had received a prior axotomy in vivo. This clear demonstration of CB(2) receptors on sensory neurons suggests an additional cellular target for CB(2) agonist induced analgesia, at least in neuropathic models.
Pain | 2001
Sadhana Patel; Sami Naeem; Adam Kesingland; Wolfgang Froestl; Marco Capogna; Laszlo Urban; Alyson Fox
&NA; We have examined the effects of a novel GABAB agonist, CGP35024, in models of chronic neuropathic (partial sciatic ligation) and inflammatory (Freunds complete adjuvant) pain in the rat, and its inhibitory action on spinal transmission in vitro. The effects of CGP35024 were compared with L‐baclofen and gabapentin. CGP35024 and L‐baclofen reversed neuropathic mechanical hyperalgesia following single subcutaneous or intrathecal administration, but did not affect inflammatory mechanical hyperalgesia. Gabapentin only moderately affected neuropathic hyperalgesia following a single administration by either route, but produced significant reversal following daily administration for 5 days. It was only weakly active against inflammatory hyperalgesia following single or repeated administration. The antihyperalgesic effects of L‐baclofen and CGP35024, but not gabapentin, were blocked by the selective GABAB receptor antagonist CGP56433A. CGP35024 was seven times more potent against neuropathic hyperalgesia than in the rotarod test for motor co‐ordination, whilst L‐baclofen was approximately equipotent in the two tests. In the isolated hemisected spinal cord from the rat, CGP35024, L‐baclofen and gabapentin all inhibited capsaicin‐evoked ventral root potentials (VRPs). CGP35024 and L‐baclofen, but not gabapentin, also inhibited the polysynaptic and monosynaptic phases of electrically‐evoked VRPs, as well as the ‘wind‐up’ response to repetitive stimulation. These data indicate that CGP35024 and L‐baclofen modulate nociceptive transmission in the spinal cord to inhibit neuropathic hyperalgesia, and that CGP35024 has a therapeutic window for antihyperalgesia over spasmolysis.
Pain | 1999
Alyson Fox; Christopher Eastwood; Clive Gentry; Donald C. Manning; Laszlo Urban
Streptozotocin (STZ)-induced diabetes in the rat has been increasingly used as a model of painful diabetic neuropathy to assess the efficacies of potential analgesic agents. We have established this model, and here we question whether the changes in nocifensive reflex activity, used as a measure of hyperalgesia, are genuinely indicative of peripheral neuropathy or may rather be attributed to the extreme poor health of the animals. For comparison we have examined animals with peripheral neuropathy induced by partial ligation of the sciatic nerve. Diabetic animals were chronically ill, with reduced growth rate, polyuria, diarrhoea, and had enlarged and distended bladders. Indicative of their poor health, diabetic animals showed markedly reduced motor activity. In contrast, following partial sciatic nerve ligation rats showed none of these adverse effects and their motor activity was not different to naive animals. Diabetic animals displayed marked mechanical hyperalgesia, and some thermal hypoalgesia. Morphine and L-baclofen partially reversed established STZ-induced mechanical hyperalgesia, whilst the NK-1 receptor-antagonist RP-67580, the NMDA-antagonists MK801 and ketamine, and the nitric oxide synthase inhibitor L-NAME were without significant effect. Morphine and L-baclofen produced greater reversal of mechanical hyperalgesia following partial nerve ligation, although RP67580 and MK801 showed little or no activity. These data confirm previous findings that STZ-induced diabetes in rats produces long-lasting mechanical, but not thermal hyperalgesia. In our experience this mechanical hyperalgesia is largely resistant to a range of pharmacological tools. However, we feel that the profound ill-health of the animals, together with the poor activity of a range of potential analgesic drugs, must raise questions on the predictive value of these animals as a model for the human condition of chronic diabetic pain seen in patients receiving long-term insulin treatment, as well as ethical concerns on the use of the animals themselves.
British Journal of Pharmacology | 2005
Ronald Esser; Carol Berry; Zhengming Du; Janet Dawson; Alyson Fox; Roger Aki Fujimoto; William O. Haston; Earl F. Kimble; Julie Koehler; Jane V. Peppard; Elizabeth Quadros; Joseph Quintavalla; Karen Toscano; Laszlo Urban; John H. Van Duzer; Xiaoli Zhang; Siyuan Zhou; Paul J. Marshall
1 This manuscript presents the preclinical profile of lumiracoxib, a novel cyclooxygenase‐2 (COX‐2) selective inhibitor. 2 Lumiracoxib inhibited purified COX‐1 and COX‐2 with Ki values of 3 and 0.06 μM, respectively. In cellular assays, lumiracoxib had an IC50 of 0.14 μM in COX‐2‐expressing dermal fibroblasts, but caused no inhibition of COX‐1 at concentrations up to 30 μM (HEK 293 cells transfected with human COX‐1). 3 In a human whole blood assay, IC50 values for lumiracoxib were 0.13 μM for COX‐2 and 67 μM for COX‐1 (COX‐1/COX‐2 selectivity ratio 515). 4 Lumiracoxib was rapidly absorbed following oral administration in rats with peak plasma levels being reached between 0.5 and 1 h. 5 Ex vivo, lumiracoxib inhibited COX‐1‐derived thromboxane B2 (TxB2) generation with an ID50 of 33 mg kg−1, whereas COX‐2‐derived production of prostaglandin E2 (PGE2) in the lipopolysaccharide‐stimulated rat air pouch was inhibited with an ID50 value of 0.24 mg kg−1. 6 Efficacy of lumiracoxib in rat models of hyperalgesia, oedema, pyresis and arthritis was dose‐dependent and similar to diclofenac. However, consistent with its low COX‐1 inhibitory activity, lumiracoxib at a dose of 100 mg kg−1 orally caused no ulcers and was significantly less ulcerogenic than diclofenac (P<0.05). 7 Lumiracoxib is a highly selective COX‐2 inhibitor with anti‐inflammatory, analgesic and antipyretic activities comparable with diclofenac, the reference NSAID, but with much improved gastrointestinal safety.
Journal of Clinical Investigation | 1997
Alyson Fox; Peter J. Barnes; Priya Venkatesan; Maria G. Belvisi
Sensory nerves play an important role in airway disease by mediating central reflexes such as cough, and local axon reflexes resulting in the peripheral release of neuropeptides. We have tested whether the benzimidazolone compound, NS1619, an opener of large conductance calcium-activated potassium (BK Ca) channels, inhibits the activity of sensory fibers, and central and local airway reflexes in guinea pig airways. In in vitro single fiber recording experiments, NS1619 applied to identified receptive fields in the trachea inhibited the firing of A(delta)-fibers evoked by hypertonic saline and distilled water, and bradykinin-evoked firing of C-fibers. Electrically evoked nonadrenergic noncholinergic contractions of isolated bronchi mediated by the release of neurokinin A (NKA) from C-fibers, but not those elicited by exogenous NKA, were inhibited by NS1619. These effects of NS1619 were prevented by iberiotoxin, a selective blocker of BK Ca channels. In conscious guinea pigs, cough evoked by aerosolized citric acid was also inhibited by NS1619. These data show that BK Ca channel activation inhibits sensory nerve activity, resulting in a reduction of both afferent and efferent function. BK Ca channel openers may therefore be of potential benefit in reducing neurogenic inflammation and central reflexes seen during inflammatory conditions of the airways, and may represent a new class of antitussive drug.