Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alysson R. Carvalho is active.

Publication


Featured researches published by Alysson R. Carvalho.


American Journal of Respiratory and Critical Care Medicine | 2009

Variable Tidal Volumes Improve Lung Protective Ventilation Strategies in Experimental Lung Injury

Peter M. Spieth; Alysson R. Carvalho; Paolo Pelosi; Catharina Hoehn; Christoph Meissner; Michael Kasper; Matthias Hübler; Matthias von Neindorff; Constanze Dassow; Martina Barrenschee; Stefan Uhlig; Thea Koch; Marcelo Gama de Abreu

RATIONALE Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. OBJECTIVES To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. METHODS In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). MEASUREMENTS AND MAIN RESULTS Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. CONCLUSIONS Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.


Critical Care Medicine | 2008

Noisy pressure support ventilation: A pilot study on a new assisted ventilation mode in experimental lung injury*

Marcelo Gama de Abreu; Peter M. Spieth; Paolo Pelosi; Alysson R. Carvalho; Christiane Walter; Anna Schreiber-Ferstl; Peter Aikele; Boriana Neykova; Matthias Hübler; Thea Koch

Objective:To describe and evaluate the effects of the new noisy pressure support ventilation (noisy PSV) on lung physiologic variables. Design:Crossover design with four modes of mechanical ventilation. Setting:Experimental research facility of a university hospital. Subjects:A total of 12 pigs weighing 25.0–36.5 kg. Interventions:Animals were anesthetized, the trachea was intubated, and lungs were ventilated with a mechanical ventilator (volume-controlled mode). Acute lung injury was then induced by surfactant depletion. Biphasic intermittent airway pressure/airway pressure release ventilation (BIPAP/APRV) was initiated, and anesthesia depth was decreased to allow spontaneous breathing. After that, each animal was ventilated with four different modes of assisted mechanical ventilation (1 hr each, Latin squares sequence): 1) PSV, 2) PSV combined with intermittent sighs (PSV + Sighs), 3) BIPAP/APRV + spontaneous breathing, and 4) noisy PSV with random variation of pressure support (normal distribution). The mean level of pressure support was set identical in all PSV forms. Measurements and Main Results:We found that noisy PSV increased tidal volume variability compared with PSV and PSV + Sighs (19% vs. 5% and 7%, respectively, p < .05) independently from the inspiratory effort; improved oxygenation and reduced venous admixture but did not affect the amount of nonaerated lung tissue as compared with other assisted ventilation modes; reduced mean airway pressure at comparable minute ventilation; redistributed pulmonary blood flow toward nondependent lung regions similar to other PSV forms, whereas BIPAP/APRV + spontaneous breathing did not; and reduced the inspiratory effort and cardiac output in comparison with BIPAP/APRV + spontaneous breathing. Conclusions:In the surfactant depletion model of acute lung injury, the new noisy PSV increased the variability of the respiratory pattern and improved oxygenation by a redistribution of perfusion toward the ventilated nondependent lung regions with simultaneous lower mean airway pressure, comparable minute ventilation, and no increase in the inspiratory effort or cardiac output.


Critical Care | 2007

Positive end-expiratory pressure at minimal respiratory elastance represents the best compromise between mechanical stress and lung aeration in oleic acid induced lung injury.

Alysson R. Carvalho; Frederico C. Jandre; Alexandre Visintainer Pino; Fernando A. Bozza; Jorge I. F. Salluh; Rosana Souza Rodrigues; Fábio Oliveira Áscoli; Antonio Giannella-Neto

IntroductionProtective ventilatory strategies have been applied to prevent ventilator-induced lung injury in patients with acute lung injury (ALI). However, adjustment of positive end-expiratory pressure (PEEP) to avoid alveolar de-recruitment and hyperinflation remains difficult. An alternative is to set the PEEP based on minimizing respiratory system elastance (Ers) by titrating PEEP. In the present study we evaluate the distribution of lung aeration (assessed using computed tomography scanning) and the behaviour of Ers in a porcine model of ALI, during a descending PEEP titration manoeuvre with a protective low tidal volume.MethodsPEEP titration (from 26 to 0 cmH2O, with a tidal volume of 6 to 7 ml/kg) was performed, following a recruitment manoeuvre. At each PEEP, helical computed tomography scans of juxta-diaphragmatic parts of the lower lobes were obtained during end-expiratory and end-inspiratory pauses in six piglets with ALI induced by oleic acid. The distribution of the lung compartments (hyperinflated, normally aerated, poorly aerated and non-aerated areas) was determined and the Ers was estimated on a breath-by-breath basis from the equation of motion of the respiratory system using the least-squares method.ResultsProgressive reduction in PEEP from 26 cmH2O to the PEEP at which the minimum Ers was observed improved poorly aerated areas, with a proportional reduction in hyperinflated areas. Also, the distribution of normally aerated areas remained steady over this interval, with no changes in non-aerated areas. The PEEP at which minimal Ers occurred corresponded to the greatest amount of normally aerated areas, with lesser hyperinflated, and poorly and non-aerated areas. Levels of PEEP below that at which minimal Ers was observed increased poorly and non-aerated areas, with concomitant reductions in normally inflated and hyperinflated areas.ConclusionThe PEEP at which minimal Ers occurred, obtained by descending PEEP titration with a protective low tidal volume, corresponded to the greatest amount of normally aerated areas, with lesser collapsed and hyperinflated areas. The institution of high levels of PEEP reduced poorly aerated areas but enlarged hyperinflated ones. Reduction in PEEP consistently enhanced poorly or non-aerated areas as well as tidal re-aeration. Hence, monitoring respiratory mechanics during a PEEP titration procedure may be a useful adjunct to optimize lung aeration.


Anesthesiology | 2009

Effects of Different Levels of Pressure Support Variability in Experimental Lung Injury

Peter M. Spieth; Alysson R. Carvalho; Andreas Güldner; Paolo Pelosi; Oleg Kirichuk; Thea Koch; Marcelo Gama de Abreu

Background:Noisy pressure support ventilation has been reported to improve respiratory function compared to conventional assisted mechanical ventilation. We aimed at determining the optimal level of pressure support variability during noisy pressure support ventilation. Methods:Twelve pigs were anesthetized and mechanically ventilated. Acute lung injury was induced by surfactant depletion. At four levels of pressure support variability (coefficients of variation of pressure support equal to 7.5, 15, 30, and 45%, 30 min each, crossover design, special Latin squares sequence), we measured respiratory variables, gas exchange, hemodynamics, inspiratory effort, and comfort of breathing. The mean level of tidal volume was constant among variability levels. Results:Compared to conventional pressure support ventilation, different levels of variability in pressure support improved the elastance of the respiratory system, peak airway pressure, oxygenation, and intrapulmonary shunt. Oxygenation and venous admixture benefited more from intermediate (30%) levels of variability, whereas elastance and peak airway pressure improved linearly with increasing variability. Heart rate as well as mean arterial and pulmonary arterial pressures decreased slightly at intermediate to high (30–45%) levels of variability in pressure support. Inspiratory effort and comfort of breathing were not importantly influenced by increased variability in pressure support. Conclusion:In a surfactant depletion model of acute lung injury, variability of pressure support improves lung function. The variability level of 30% seems to represent a reasonable compromise to improve lung functional variables during noisy pressure support ventilation.


Critical Care Medicine | 2011

Pressure support improves oxygenation and lung protection compared to pressure-controlled ventilation and is further improved by random variation of pressure support.

Peter M. Spieth; Alysson R. Carvalho; Andreas Güldner; Michael Kasper; René Schubert; Nadja C. Carvalho; Alessandro Beda; Constanze Dassow; Stefan Uhlig; Thea Koch; Paolo Pelosi; Marcelo Gama de Abreu

Objectives:To explore whether 1) conventional pressure support ventilation improves lung function and attenuates the pulmonary inflammatory response compared to pressure-controlled ventilation and 2) random variation of pressure support levels (noisy pressure support ventilation) adds further beneficial effects to pressure support ventilation. Design:Three-arm, randomized, experimental study. Setting:University hospital research facility. Subjects:Twenty-four juvenile pigs. Interventions:Acute lung injury was induced by surfactant depletion. Animals were randomly assigned to 6 hrs of mechanical ventilation (n = 8 per group) with either 1) pressure-controlled ventilation, 2) pressure support ventilation, or 3) noisy pressure support ventilation. During noisy pressure support ventilation, the pressure support varied randomly, with values following a normal distribution. In all groups, the driving pressures were set to achieve a mean tidal volume of 6 mL/kg. At the end of experiments, animals were killed and lungs extracted for histologic and biochemical analysis. Measurements and Main Results:Respiratory, gas-exchange, and hemodynamics variables were assessed hourly. The diffuse alveolar damage and the inflammatory response of lungs were quantified. Pressure support ventilation and noisy pressure support ventilation improved gas exchange and were associated with reduced histologic damage and interleukin-6 concentrations in lung tissue compared to pressure-controlled ventilation. Noisy pressure support ventilation further improved gas exchange and decreased the inspiratory effort while reducing alveolar edema and inflammatory infiltration compared to pressure support ventilation. Conclusions:In this model of acute lung injury, pressure support ventilation and noisy pressure support ventilation attenuated pulmonary inflammatory response and improved gas exchange as compared to pressure-controlled ventilation. Noisy pressure support ventilation further improved gas exchange, reduced the inspiratory effort, and attenuated alveolar edema and inflammatory infiltration as compared to conventional pressure support ventilation.


Anesthesia & Analgesia | 2009

Pressure support ventilation and biphasic positive airway pressure improve oxygenation by redistribution of pulmonary blood flow.

Alysson R. Carvalho; Peter M. Spieth; Paolo Pelosi; Alessandro Beda; Agnaldo José Lopes; Boriana Neykova; Axel R. Heller; Thea Koch; Marcelo Gama de Abreu

BACKGROUND:Spontaneous breathing (SB) activity may improve gas exchange during mechanical ventilation mainly by the recruitment of previously collapsed regions. Pressure support ventilation (PSV) and biphasic positive airway pressure (BIPAP) are frequently used modes of SB, but little is known about the mechanisms of improvement of lung function during these modes of assisted mechanical ventilation. We evaluated the mechanisms behind the improvement of gas exchange with PSV and BIPAP. METHODS:Five pigs (25–29.3 kg) were mechanically ventilated in supine position, and acute lung injury (ALI) was induced by surfactant depletion. After stabilization, BIPAP was initiated with lower continuous positive airway pressure equal to 5 cm H2O and the higher continuous positive airway pressure titrated to achieve a tidal volume between 6 and 8 mL/kg. The depth of anesthesia was reduced, and when SB represented ≥20% of total minute ventilation, PSV and BIPAP + SB were each performed for 1 h (random sequence). Whole chest helical computed tomography was performed during end-expiratory pauses and functional variables were obtained. Pulmonary blood flow (PBF) was marked with IV administered fluorescent microspheres, and spatial cluster analysis was used to determine the effects of each ventilatory mode on the distribution of PBF. RESULTS:ALI led to impairment of lung function and increase of poorly and nonaerated areas in dependent lung regions (P < 0.05). PSV and BIPAP + SB similarly improved oxygenation and reduced venous admixture compared with controlled mechanical ventilation (P < 0.05). Despite that, a significant increase of nonaerated areas in dependent regions with a concomitant decrease of normally aerated areas was observed during SB. In five of six lung clusters, redistribution of PBF from dependent to nondependent, better aerated lung regions were observed during PSV and BIPAP + SB. CONCLUSIONS:In this model of ALI, the improvements of oxygenation and venous admixture obtained during assisted mechanical ventilation with PSV and BIPAP + SB were explained by the redistribution of PBF toward nondependent lung regions rather than recruitment of dependent zones.


Journal of Applied Physiology | 2011

Distribution of regional lung aeration and perfusion during conventional and noisy pressure support ventilation in experimental lung injury

Alysson R. Carvalho; P Spieth; Andreas Güldner; Maximilano Cuevas; Nadja C. Carvalho; Alessandro Beda; Stephanie Spieth; Christian Stroczynski; Bärbel Wiedemann; Thea Koch; Paolo Pelosi; Marcelo Gama de Abreu

In acute lung injury (ALI), pressure support ventilation (PSV) may improve oxygenation compared with pressure-controlled ventilation (PCV), and benefit from random variation of pressure support (noisy PSV). We investigated the effects of PCV, PSV, and noisy PSV on gas exchange as well as the distribution of lung aeration and perfusion in 12 pigs with ALI induced by saline lung lavage in supine position. After injury, animals were mechanically ventilated with PCV, PSV, and noisy PSV for 1 h/mode in random sequence. The driving pressure was set to a mean tidal volume of 6 ml/kg and positive end-expiratory pressure to 8 cmH₂O in all modes. Functional variables were measured, and the distribution of lung aeration was determined by static and dynamic computed tomography (CT), whereas the distribution of pulmonary blood flow (PBF) was determined by intravenously administered fluorescent microspheres. PSV and noisy PSV improved oxygenation and reduced venous admixture compared with PCV. Mechanical ventilation with PSV and noisy PSV did not decrease nonaerated areas but led to a redistribution of PBF from dorsal to ventral lung regions and reduced tidal reaeration and hyperinflation compared with PCV. Noisy PSV further improved oxygenation and redistributed PBF from caudal to cranial lung regions compared with conventional PSV. We conclude that assisted ventilation with PSV and noisy PSV improves oxygenation compared with PCV through redistribution of PBF from dependent to nondependent zones without lung recruitment. Random variation of pressure support further redistributes PBF and improves oxygenation compared with conventional PSV.


Critical Care | 2006

Effects of descending positive end-expiratory pressure on lung mechanics and aeration in healthy anaesthetized piglets

Alysson R. Carvalho; Frederico C. Jandre; Alexandre Visintainer Pino; Fernando Bozza; Jorge I. F. Salluh; Rosana Souza Rodrigues; João Hn Soares; Antonio Giannella-Neto

IntroductionAtelectasis and distal airway closure are common clinical entities of general anaesthesia. These two phenomena are expected to reduce the ventilation of dependent lung regions and represent major causes of arterial oxygenation impairment in anaesthetic conditions. The behaviour of the elastance of the respiratory system (Ers), as well as the lung aeration assessed by computed tomography (CT) scan, was evaluated during a descendent positive end-expiratory pressure (PEEP) titration. This work sought to evaluate the potential usefulness of Ers monitoring to set the PEEP in order to prevent tidal recruitment and hyperinflation of healthy lungs under general anaesthesia.MethodsPEEP titration (from 16 to 0 cmH2O, tidal volume of 8 ml/kg) was performed, and at each PEEP, CT scans were obtained during end-expiratory and end-inspiratory pauses in six healthy, anaesthetized and paralyzed piglets. The distribution of lung aeration was determined and the tidal re-aeration was calculated as the difference between end-expiratory and end-inspiratory poorly aerated and normally aerated areas. Similarly, tidal hyperinflation was obtained as the difference between end-inspiratory and end-expiratory hyperinflated areas. Ers was estimated from the equation of motion of the respiratory system during all PEEP titration with the least-squares method.ResultsHyperinflated areas decreased from PEEP 16 to 0 cmH2O (ranges decreased from 24–62% to 1–7% at end-expiratory pauses and from 44–73% to 4–17% at end-inspiratory pauses) whereas normally aerated areas increased (from 30–66% to 72–83% at end-expiratory pauses and from 19–48% to 73–77% at end-inspiratory pauses). From 16 to 8 cmH2O, Ers decreased with a corresponding reduction in tidal hyperinflation. A flat minimum of Ers was observed from 8 to 4 cmH2O. For PEEP below 4 cmH2O, Ers increased in association with a rise in tidal re-aeration and a flat maximum of the normally aerated areas.ConclusionIn healthy piglets under a descending PEEP protocol, the PEEP at minimum Ers presented a compromise between maximizing normally aerated areas and minimizing tidal re-aeration and hyperinflation. High levels of PEEP, greater than 8 cmH2O, reduced tidal re-aeration but increased hyperinflation with a concomitant decrease in normally aerated areas.


Critical Care | 2014

Non-lobar atelectasis generates inflammation and structural alveolar injury in the surrounding healthy tissue during mechanical ventilation

Jaime Retamal; Bruno Curty Bergamini; Alysson R. Carvalho; Fernando A. Bozza; Gisella Borzone; João Batista Borges; Anders Larsson; Göran Hedenstierna; Guillermo Bugedo; Alejandro Bruhn

IntroductionWhen alveoli collapse the traction forces exerted on their walls by adjacent expanded units may increase and concentrate. These forces may promote its re-expansion at the expense of potentially injurious stresses at the interface between the collapsed and the expanded units. We developed an experimental model to test the hypothesis that a local non-lobar atelectasis can act as a stress concentrator, contributing to inflammation and structural alveolar injury in the surrounding healthy lung tissue during mechanical ventilation.MethodsA total of 35 rats were anesthetized, paralyzed and mechanically ventilated. Atelectasis was induced by bronchial blocking: after five minutes of stabilization and pre-oxygenation with FIO2 = 1.0, a silicon cylinder blocker was wedged in the terminal bronchial tree. Afterwards, the animals were randomized between two groups: 1) Tidal volume (VT) = 10 ml/kg and positive end-expiratory pressure (PEEP) = 3 cmH2O (VT10/PEEP3); and 2) VT = 20 ml/kg and PEEP = 0 cmH2O (VT20/zero end-expiratory pressure (ZEEP)). The animals were then ventilated during 180 minutes. Three series of experiments were performed: histological (n = 12); tissue cytokines (n = 12); and micro-computed tomography (microCT; n = 2). An additional six, non-ventilated, healthy animals were used as controls.ResultsAtelectasis was successfully induced in the basal region of the lung of 26 out of 29 animals. The microCT of two animals revealed that the volume of the atelectasis was 0.12 and 0.21 cm3. There were more alveolar disruption and neutrophilic infiltration in the peri-atelectasis region than the corresponding contralateral lung (control) in both groups. Edema was higher in the peri-atelectasis region than the corresponding contralateral lung (control) in the VT20/ZEEP than VT10/PEEP3 group. The volume-to-surface ratio was higher in the peri-atelectasis region than the corresponding contralateral lung (control) in both groups. We did not find statistical difference in tissue interleukin-1β and cytokine-induced neutrophil chemoattractant-1 between regions.ConclusionsThe present findings suggest that a local non-lobar atelectasis acts as a stress concentrator, generating structural alveolar injury and inflammation in the surrounding lung tissue.


Toxicon | 2011

LASSBio 596 per os avoids pulmonary and hepatic inflammation induced by microcystin-LR

Natália Vasconcelos Casquilho; Giovanna Carvalho; João L.C.R. Alves; Mariana Nascimento Machado; Raquel M. Soares; Sandra M.F.O. Azevedo; Lidia M. Lima; Eliezer J. Barreiro; Samuel Santos Valença; Alysson R. Carvalho; Débora S. Faffe; Walter A. Zin

Cyanobacterial blooms that generate microcystins (MCYSTs) are increasingly recognized as an important health problem in aquatic ecosystems. We have previously reported the impairment of pulmonary structure and function by microcystin-LR (MCYST-LR) exposure as well as the pulmonary improvement by intraperitoneally injected (i.p.) LASSBio 596. In the present study, we aimed to evaluate the usefulness of LASSBio 596 per os on the treatment of pulmonary and hepatic injuries induced by MCYST-LR. Swiss mice received an intraperitoneal injection of 40 μl of saline (CTRL) or a sub-lethal dose of MCYST-LR (40 μg/kg). After 6 h the animals received either saline (TOX and CTRL groups) or LASSBio 596 (50 mg/kg, LASS group) by gavage. Eight hours after the first instillation, lung impedance (static elastance, elastic component of viscoelasticity and resistive, viscoelastic and total pressures) was determined by the end-inflation occlusion method. Left lung and liver were prepared for histology. In lung and hepatic homogenates MCYST-LR, TNF-α, IL-1β and IL-6 were determined by ELISA. LASSBio 596 per os (LASS mice) kept all lung mechanical parameters, polymorphonuclear (PMN) cells, pro-inflammatory mediators, and alveolar collapse similar to control mice (CTRL), whereas in TOX these findings were higher than CTRL. Likewise, liver structural deterioration (hepatocytes inflammation, necrosis and steatosis) and inflammatory process (high levels of pro-inflammatory mediators) were less evident in the LASS than TOX group. LASS and CTRL did not differ in any parameters studied. In conclusion, orally administered LASSBio 596 prevented lung and hepatic inflammation and completely blocked pulmonary functional and morphological changes induced by MCYST-LR.

Collaboration


Dive into the Alysson R. Carvalho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Giannella-Neto

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Peter M. Spieth

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marcelo Gama de Abreu

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Alessandro Beda

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Walter A. Zin

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Thea Koch

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederico C. Jandre

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Andreas Güldner

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge