Alzbeta Mlynarcikova
Slovak Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alzbeta Mlynarcikova.
Molecular Reproduction and Development | 2011
Eva Nagyova; Antonella Camaioni; Sona Scsukova; Alzbeta Mlynarcikova; Radek Prochazka; Lucie Nemcova; Antonietta Salustri
Several lines of evidence suggest that in mice the activation of SMAD2/3 signaling by oocyte secreted factors, together with epidermal growth factor receptor (EGFR) activation, is essential to induce cumulus expansion. Here we show that inhibition of EGFR kinase in follicle stimulating hormone (FSH)‐stimulated porcine oocyte–cumulus cell complex (OCCs) strongly decreases hyaluronan (HA) synthesis and its retention in the matrix, as well as progesterone synthesis. Although porcine cumulus cells undergo expansion independently of oocytes, we use biochemical and gene expression analyses to show that they do require activation of SMAD2/3 for optimal stimulation of HA synthesis and proteins involved in the organization of this polymer in the expanded matrix. Furthermore, FSH‐induced progesterone synthesis by porcine cumulus cells was increased by blocking SMAD2/3 activation. In conclusion, these results support the hypothesis that an FSH–EGF autocrine loop is active in porcine OCCs, and provide the first evidence that the SMAD2/3 signaling pathway is induced by paracrine/autocrine factors in porcine cumulus cells and is involved in the control of both cumulus expansion and steroidogenesis. Mol. Reprod. Dev. 78:391–402, 2011.
Domestic Animal Endocrinology | 2012
Eva Nagyova; Sona Scsukova; Lucie Nemcova; Alzbeta Mlynarcikova; Young-Joo Yi; Miriam Sutovsky; Peter Sutovsky
Porcine oocyte-cumulus complexes (OCCs) form an expanded cumulus extracellular matrix (ECM) in response to gonadotropins during meiotic maturation. Essential components of ECM are hyaluronan (HA), tumor necrosis factor α-induced protein 6 (TNFAIP6) and heavy chains (HC) of interalpha-trypsin inhibitor. To form expanded cumulus ECM, intermediate complexes (TNFAIP6-HC) must bind to HA to allow HC transfer onto HA. Protein turnover by the ubiquitin-proteasome pathway is poorly characterized in this process. It is known that the specific proteasomal inhibitor MG132 prevents cumulus expansion and formation of ECM. To determine whether inhibition of proteasomal proteolysis with MG132 affects cumulus cell steroidogenesis and expression of the cumulus expansion-related components (hyaluronan synthase type 2, HAS2, TNFAIP6) we cultured porcine OCCs and granulosa cells (GCs) in a medium supplemented with FSH/LH. Methods performed included real-time reverse transcription PCR, immunofluorescence and RIAs. The expression of TNFAIP6 and HAS2 transcripts increased significantly after the stimulation of OCCs and GCs with FSH/LH. In contrast, treatment with MG132 reduced the expression of TNFAIP6 and HAS2. Hyaluronan was detected with biotinylated HA-binding proteins within FSH/LH-stimulated expanded OCCs but not in those treated with MG132. Progesterone production, although increased almost three times after OCCs stimulation with FSH/LH, was significantly suppressed by MG132. The FSH/LH-stimulated a 40-fold increase in progesterone secretion by GCs was inhibited in the presence of MG132. In conclusion, MG132 affects progesterone secretion and expression of cumulus expansion-related components by cumulus and GCs, suggesting the requirement of ubiquitin-proteasome pathway-regulated protein turnover for formation of ECM during cumulus expansion in the preovulatory period in the pig.
Molecular Reproduction and Development | 2009
Radek Prochazka; Lucie Nemcova; Eva Nagyova; Sona Scsukova; Alzbeta Mlynarcikova
We show in the present study that freshly isolated pig cumulus–oocyte complexes (COCs) display a limited response to LH, as assessed by the expression of hyaluronan synthase 2 (Has2) mRNA, activation of protein kinase A (PKA), production of hyaluronic acid (HA) and progesterone, cumulus cell expansion and resumption of meiosis. These data indicate that freshly isolated COCs do not possess a sufficient number of functional LH receptors (LHR). However, the expression of Lhr significantly increased during the culture of COCs in vitro in a medium supplemented with FSH. Assuming that the effect of FSH on LHR induction is mediated via cAMP signaling pathways, we developed a new culture system, in which the COCs were pre‐cultured for 72 hr in a medium supplemented with dbcAMP. The pre‐cultured COCs remained in the germinal vesicle stage, their cumulus investment underwent a dramatic increase in size and gap junctions between the cumulus cells were preserved. The stimulation of such COCs with either FSH or LH led to the resumption and completion of meiosis, activation of PKA, expression of Has2, synthesis of large amounts of HA and progesterone, and extensive expansion of cumulus cells. We conclude that the formation of functional LHR is stimulated in cumulus cells during the culture in vitro in a cAMP‐dependent pathway. The dbcAMP‐treated COCs thus represent a new model in which the resumption of meiosis and cumulus expansion can be induced exclusively by the action of recombinant LH. Mol. Reprod. Dev. 76: 751–761, 2009.
Reproductive Biology | 2016
Sona Scsukova; Eva Rollerova; Alzbeta Mlynarcikova
A growing body of evidence suggests that exposure to chemical substances designated as endocrine disrupting chemicals (EDCs) due to their ability to disturb endocrine (hormonal) activity in humans and animals, may contribute to problems with fertility, pregnancy, and other aspects of reproduction. The presence of EDCs has already been associated with reproductive malfunction in wildlife species, but it remains difficult to prove causal relationships between the presence of EDCs and specific reproductive problems in vivo, especially in females. On the other hand, the increasing number of experiments with laboratory animals and in vitro research indicate the ability of different EDCs to influence the normal function of female reproductive system, and even their association with cancer development or progression. Research shows that EDCs may pose the greatest risk during prenatal and early postnatal development when organ and neural systems are forming. In this review article, we aim to point out a possible contribution of EDCs to the onset and development of female reproductive disorders and endocrine-related cancers with regard to the period of exposure to EDCs and affected endpoints (organs or processes).
Reproductive Toxicology | 2015
Eva Rollerova; Jana Jurčovičová; Alzbeta Mlynarcikova; Irina Sadlonova; Dagmar Bilanicova; Ladislava Wsolova; Alexander Kiss; Jevgenij Kovriznych; Juraj Kronek; Fedor Čiampor; I. Vávra; Sona Scsukova
We studied delayed effects of neonatal exposure to polymeric nanoparticle poly(ethylene glycol)-block-polylactide methyl ether (PEG-b-PLA) on the endpoints related to pubertal development and reproductive function in female Wistar rats from postnatal day 4 (PND4) to PND 176. Female pups were injected intraperitoneally, daily, from PND4 to PND7 with PEG-b-PLA (20 or 40mg/kg b.w.). Both doses of PEG-b-PLA accelerated the onset of vaginal opening compared with the control group. In the low-dose PEG-b-PLA-treated group, a significantly reduced number of regular estrous cycles, increased pituitary weight due to hyperemia, vascular dilatation and congestion, altered course of hypothalamic gonadotropin-releasing hormone-stimulated luteinizing hormone secretion, and increased progesterone serum levels were observed. The obtained data indicate that neonatal exposure to PEG-b-PLA might affect the development and function of hypothalamic-pituitary-ovarian axis (HPO), and thereby alter functions of the reproductive system in adult female rats. Our study indicates a possible neuroendocrine disrupting effect of PEG-b-PLA nanoparticles.
Fertility and Sterility | 2013
Eva Nagyova; Lucie Nemcova; Alzbeta Mlynarcikova; Sona Scsukova; Jaroslav Kalous
OBJECTIVE To determine whether inhibition of epidermal growth factor (EGF) receptor tyrosine kinase with lapatinib affects oocyte maturation, expression of the cumulus expansion-associated genes such as tumor necrosis factor alpha-induced protein 6 (TNFAIP6) and prostaglandin-endoperoxide synthase 2 (PTGS2), and synthesis of hyaluronan (HA) and progesterone (P) by porcine oocyte cumulus complexes (OCC). DESIGN Our work focuses on lapatinib, an orally active small molecule that selectively inhibits the tyrosine kinase domain of both EGF receptor and human EGF receptor 2, and downstream signaling. SETTING A reproductive biology laboratory. PATIENT(S) Not applicable. INTERVENTION(S) Porcine OCC were cultured in vitro in a medium with FSH/LH in the presence/absence of lapatinib. MAIN OUTCOME MEASURE(S) Methods performed: real-time reverse transcriptase-polymerase chain reaction (PCR), immunofluorescence, RIA. RESULT(S) In FSH/LH-stimulated and expanded cumulus oophorus extracellular matrix, HA was detected with biotinylated HA-binding proteins. However, weaker HA- and weaker cytoplasmic TNFAIP6 were detected were detected in lapatinib-pretreated OCC. The expression of the two cumulus expansion-associated gene transcripts was significantly decreased and synthesis of HA by cumulus cells was reduced. Lapatinib (10 μM) inhibited FSH/LH-induced oocyte meiotic maturation. Progesterone production increased after OCC stimulation with FSH/LH and was significantly decreased by lapatinib (10 μM). CONCLUSION(S) Lapatinib inhibits oocyte maturation and reduces expression of cumulus expansion-associated transcripts, and synthesis of HA and P in OCC cultured in vitro in FSH/LH-supplemented medium.
Environmental Toxicology and Pharmacology | 2018
Alzbeta Mlynarcikova; Sona Scsukova
In the present study, we aimed to examine effects of different concentrations of the endocrine disruptor Bisphenol A (BPA; 1 nM, 1 μM, 100 μM) and the flavonoid fisetin (1, 10, 25, 50 μM), individually and in combinations, on steroidogenic function of porcine ovarian granulosa cells (GCs) represented by progesterone production. We confirmed that BPA inhibited progesterone production by GCs at the highest concentration. Fisetin reduced gonadotropin-stimulated progesterone synthesis dose-dependently, and in this manner, fisetin impaired progesterone production when added to BPA-treated GCs. The mechanisms of the inhibitory effects of the combinations included a significant down-regulation of the key steroidogenesis-related genes (STAR, CYP11A1, HSD3B). Our findings suggest for the first time that fisetin might interfere with ovarian steroidogenesis, and might not have beneficial but rather aggravating effects in terms of modulating progesterone synthesis altered by high concentrations of BPA.
Atla-alternatives To Laboratory Animals | 2007
Alzbeta Mlynarcikova; Maria Fickova; Sona Scsukova
Toxicology Letters | 2014
Sona Scsukova; Alzbeta Mlynarcikova; Kvetoslava Smolikova; Alexander Kiss; Eva Rollerova
Reproductive Toxicology | 2013
Sona Scsukova; Alzbeta Mlynarcikova; Kvetoslava Smolikova; Eva Rollerova