Am Arthur de Jong
Eindhoven University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Am Arthur de Jong.
Journal of Applied Physics | 2004
Cm Christian Leewis; Am Arthur de Jong; Leo J. van IJzendoorn; Dirk J. Broer
A model is developed to describe the migration mechanism of monomers during the lithographic preparation of polymer gratings by ultraviolet polymerization. The model is based on the Flory–Huggins theory: a thermodynamic theory that deals with monomer/polymer solutions. During the photoinduced polymerization process, monomer migration is assumed to be driven by a gradient in the chemical potential rather than the concentration. If the chemical potential is used as the driving force, monomer migration is not only driven by a difference in concentration, or volume fraction, but also by other entropic effects such as monomer size and the degree of crosslinking of the polymer network, which is related to the ability of a polymer to swell. Interaction of the monomers with each other or the polymer is an additional energetic term in the chemical potential. The theoretical background of the model is explained and results of simulations are compared with those of nuclear microprobe measurements. A nuclear micropro...
Journal of Applied Physics | 2004
Cm Christian Leewis; Am Arthur de Jong; Leo J. van IJzendoorn; Dirk J. Broer
Simulations of volume fraction profiles formed during the lithographic preparation of polymer gratings are made with a reaction/diffusion model, based on the Flory–Huggins theory. Monomer migration is driven by a gradient in the chemical potential rather than a gradient in the concentration. If the chemical potential is used as the driving force, monomer migration is not only driven by a difference in concentration, or volume fraction, but also by other entropic effects: the differences in monomer length and the degree of crosslinking of a polymer network. The monomer volume fractions are simulated as a function of position for different ultraviolet intensities and various grating pitches. Profound edges of the monomer volume fractions caused by the fact that the reaction rate is high compared to the diffusion rate are both measured and simulated. An excellent agreement with nuclear microprobe measurements on the polymer gratings is obtained.
Biophysical Journal | 2012
M Matthias Irmscher; Am Arthur de Jong; Holger Kress; Mwj Menno Prins
The mechanical properties of the cell membrane and the subjacent actin cortex are determinants of a variety of processes in immunity and cell division. The lipid bilayer itself and its connection to the actin cortex are anisotropic. An accurate description of the mechanical structure of the cell membrane and the involved dynamics therefore necessitates a measurement technique that can capture the inherent anisotropy of the system. Here, we combine magnetic particle actuation with rotational and translational particle tracking to simultaneously measure the mechanical stiffness of monocytic cells in three rotational and two translational directions. When using particles that bind via integrins to the cell membrane and the subjacent cortex, we measured an isotropic stiffness and a characteristic power-law dependence of the shear modulus on the applied frequency. When using particles functionalized with immunoglobulin G, we measured an anisotropic stiffness with a 10-fold-reduced value in one dimension. We suggest that the observed reduced stiffness in the plane of the cell membrane is caused by a local detachment of the lipid bilayer from the subjacent cytoskeletal cortex. We expect that our technique will enable new insights into the mechanical properties of the cell membrane that will help us to better understand membrane processes such as phagocytosis and blebbing.
Analytical Chemistry | 2012
Asha Jacob; Leo J. van IJzendoorn; Am Arthur de Jong; Menno Willem Jose Prins
Biochemical affinity assays inherently involve interactions of heterogeneous nature. We report a methodology to discriminate between and accurately characterize specific and nonspecific interactions in force-induced dissociation assays. Ligand-coupled superparamagnetic particles are incubated on surfaces coated with a mixture of specific receptors and nonspecifically interacting proteins. Consequently, a mixed population of surface bound particles is formed with different binding natures. Magnetic field gradients are used to apply translational forces on the bound particles. Using a multicomponent dissociation analysis, we are able to make a distinction between weak nonspecific interactions, strong nonspecific interactions, and specific interactions. We validate the model by comprehensive experiments in which the biochemical components and applied forces are varied. The low-force data yield reliable values for the spontaneous dissociation rates of single-molecule specific bonds, and at high forces, the bond barriers are modified by the applied force. The results generate a new perspective for applications of magnetic force affinity assays in studies of heterogeneous molecular biorecognition.
Journal of Physical Chemistry B | 2013
A Alexander van Reenen; Am Arthur de Jong; Mwj Menno Prins
The upcoming generations of high-sensitive and miniaturized biosensing systems need target capture methods that are as efficient and as rapid as possible, with targets ranging from molecules to cells. Capture of the targets can be achieved using particles coated with affinity molecules, but there are still fundamental questions as to the processes that limit the association rates. In this paper we quantify and compare the reaction rates of particle-based target capture with different types of actuation, namely (i) passive thermal transport, (ii) fluid agitation by vortex mixing, and (iii) actively rotating particles. In the experiments, we use fluorescent nanoparticles as targets which are biochemically captured by magnetic microparticles, and the capture efficiency is quantified using fluorescence microscopy with single target resolution. The data unravel the contributions of volume transport, near-surface alignment, and the chemical reaction to the overall rate constant of association. Vortex mixing versus passive transport gives an increase of the reaction rate constant by more than an order of magnitude, implying that the encounter frequency as well as the near-surface alignment probability are increased. The importance of near-surface alignment is underscored by the data of active particle rotation; the binding probability per encounter is 4-fold enhanced on rotating capture particles. We discuss the implications of our results for different biological systems and for the development of novel actuation methods in particle-based target capture.
Journal of the Royal Society Interface | 2013
M Matthias Irmscher; Am Arthur de Jong; Holger Kress; Mwj Menno Prins
The internalization of matter by phagocytosis is of key importance in the defence against bacterial pathogens and in the control of cancerous tumour growth. Despite the fact that phagocytosis is an inherently mechanical process, little is known about the forces and energies that a cell requires for internalization. Here, we use functionalized magnetic particles as phagocytic targets and track their motion while actuating them in an oscillating magnetic field, in order to measure the translational and rotational stiffnesses of the phagocytic cup as a function of time. The measured evolution of stiffness reveals a characteristic pattern with a pronounced peak preceding the finalization of uptake. The measured stiffness values and their time dependence can be interpreted with a model that describes the phagocytic cup as a prestressed membrane connected to an elastically deformable actin cortex. In the context of this model, the stiffness peak is a direct manifestation of a previously described mechanical bottleneck, and a comparison of model and data suggests that the membrane advances around the particle at a speed of about 20 nm s−1. This approach is a novel way of measuring the progression of emerging phagocytic cups and their mechanical properties in situ and in real time.
Applied Physics Letters | 2013
A Alexander van Reenen; Y Yang Gao; Ah Arjen Bos; Am Arthur de Jong; Ma Martien Hulsen; Jmj Jaap den Toonder; Mwj Menno Prins
The application of magnetic particles in biomedical research and in-vitro diagnostics requires accurate characterization of their magnetic properties, with single-particle resolution and good statistics. Here, we report intra-pair magnetophoresis as a method to accurately quantify the field-dependent magnetic moments of magnetic particles and to rapidly generate histograms of the magnetic moments with good statistics. We demonstrate our method with particles of different sizes and from different sources, with a measurement precision of a few percent. We expect that intra-pair magnetophoresis will be a powerful tool for the characterization and improvement of particles for the upcoming field of particle-based nanobiotechnology.
Journal of Chemical Physics | 2004
Cm Christian Leewis; P.H.A. Mutsaers; Am Arthur de Jong; Leo J. van IJzendoorn; Martien J. A. de Voigt; Min Q. Ren; F. Watt; Dirk J. Broer
The value of the mutual diffusion coefficient DV of two acrylic monomers is determined with nuclear microprobe measurements on a set of polymer films. These films have been prepared by allowing the monomers to diffuse into each other for a certain time and subsequently applying fast ultraviolet photo-polymerization, which freezes the concentration profile. The monomer diffusion profiles are studied with a scanning 2.1 MeV proton microprobe. Each monomer contains a marker element, e.g., Cl and Si, which are easily detected with proton induced x-ray emission. From the diffusion profiles, it is possible to determine the mutual diffusion coefficient. The mutual diffusion coefficient is dependent of concentration, which is concluded from the asymmetry in the Cl- and Si-profiles. A linear dependence of the mutual diffusion coefficient on the composition is used as a first order approximation. The best fits are obtained for a value of b=(0.38+/-0.15), which is the ratio of the diffusion coefficient of 1,3-bis(3-methacryloxypropyl)-1, 1,3,3-tetramethyldisiloxane in pure 2-chloroethyl acrylate and the diffusion coefficient of 2-chloroethyl acrylate in pure 1,3-bis(3-methacryloxypropyl)-1,1,3,3-tetramethyldisiloxane. Under the assumption of a linear dependence of the mutual diffusion coefficient DV on monomer composition, it follows that DV = (2.9+/-0.6)10(-10) m(2)/s at a 1:1 monomer ratio. With Flory-Huggins expressions for the monomer chemical potentials, one can derive approximate values for the individual monomer diffusion coefficients.
Analytical Chemistry | 2017
A Alexander van Reenen; Am Arthur de Jong; Mwj Menno Prins
Because of their high surface-to-volume ratio and adaptable surface functionalization, particles are widely used in bioanalytical methods to capture molecular targets. In this article, a comprehensive study is reported of the effectiveness of protein capture by actuated magnetic particles. Association rate constants are quantified in experiments as well as in Brownian dynamics simulations for different particle actuation configurations. The data reveal how the association rate depends on the particle velocity, particle density, and particle assembly characteristics. Interestingly, single particles appear to exhibit target depletion zones near their surface, caused by the high density of capture molecules. The depletion effects are even more limiting in cases with high particle densities. The depletion effects are overcome and protein capture rates are enhanced by applying dynamic particle actuation, resulting in an increase in the association rate constants by up to 2 orders of magnitude.
Pharmaceutics | 2015
Xavier H. M. Hartmann; Peter van der Linde; Erik F. G. A. Homburg; Lambert C. A. van Breemen; Am Arthur de Jong; Regina Lüttge
Arrays of microneedles (MNAs) are integrated in an out-of-plane fashion with a base plate and can serve as patches for the release of drugs and vaccines. We used soft-lithography and micromolding to manufacture ceramic nanoporous (np)MNAs. Failure modes of ceramic npMNAs are as yet poorly understood and the question remained: is our npMNA platform technology ready for microneedle (MN) assembly into patches? We investigated npMNAs by microindentation, yielding average crack fracture forces above the required insertion force for a single MN to penetrate human skin. We further developed a thumb pressure-actuated applicator-assisted npMNA insertion method, which enables anchoring of MNs in the skin by an adhesive in one handling step. Using a set of simple artificial skin models, we found a puncture efficiency of this insertion method a factor three times higher than by applying thumb pressure on the npMNA base plate directly. In addition, this new method facilitated zero MN-breakage due to a well-defined force distribution exerted onto the MNs and the closely surrounding area prior to bringing the adhesive into contact with the skin. Owing to the fact that such parameter space exists, we can conclude that npMNAs by soft lithography are a platform technology for MN assembly into a patch.