Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amadou A. Sall is active.

Publication


Featured researches published by Amadou A. Sall.


Nature | 2016

The Brazilian Zika virus strain causes birth defects in experimental models

Fernanda R. Cugola; Isabella Rodrigues Fernandes; Fabiele Baldino Russo; Beatriz C. Freitas; João Leonardo Rodrigues Mendonça Dias; Katia P. Guimarães; Cecília Benazzato; Nathalia Almeida; Graciela Conceição Pignatari; Sarah Romero; Carolina Manganeli Polonio; Isabela Cunha; Carla Longo de Freitas; Wesley Nogueira Brandão; Cristiano Rossato; David G. Andrade; Daniele de Paula Faria; Alexandre Teles Garcez; Carlos A. Buchpigel; Carla Torres Braconi; Érica A. Mendes; Amadou A. Sall; Paolo Marinho de Andrade Zanotto; Jean Pierre Schatzmann Peron; Alysson R. Muotri; Patricia Cristina Baleeiro Beltrão-Braga

Summary Zika virus (ZIKV) is an arbovirus belonging to the genus Flavivirus (Family Flaviviridae) and was first described in 1947 in Uganda following blood analyses of sentinel Rhesus monkeys1. Until the 20th century, the African and Asian lineages of the virus did not cause meaningful infections in humans. However, in 2007, vectored by Aedes aegypti mosquitoes, ZIKV caused the first noteworthy epidemic on the island of Yap in Micronesia2. Patients experienced fever, skin rash, arthralgia and conjunctivitis2. From 2013 to 2015, the Asian lineage of the virus caused further massive outbreaks in New Caledonia and French Polynesia. In 2013, ZIKV reached Brazil, later spreading to other countries in South and Central America3. In Brazil, the virus has been linked to congenital malformations, including microcephaly and other severe neurological diseases, such as Guillain-Barré syndrome4,5. Despite clinical evidence, direct experimental proof showing that the Brazilian ZIKV (ZIKVBR) strain causes birth defects remains missing6. Here we demonstrate that the ZIKVBR infects fetuses, causing intra-uterine growth restriction (IUGR), including signs of microcephaly in mice. Moreover, the virus infects human cortical progenitor cells, leading to an increase in cell death. Finally, we observed that the infection of human brain organoids resulted in a reduction of proliferative zones and disrupted cortical layers. These results indicate that ZIKVBR crosses the placenta and causes microcephaly by targeting cortical progenitor cells, inducing cell death by apoptosis and autophagy, impairing neurodevelopment. Our data reinforce the growing body of evidence linking the ZIKVBR outbreak to the alarming number of cases of congenital brain malformations. Our model can be used to determine the efficiency of therapeutic approaches to counteracting the harmful impact of ZIKVBR in human neurodevelopment.


Journal of General Virology | 2001

Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography.

Michael W. Gaunt; Amadou A. Sall; Xavier de Lamballerie; Andrew K. I. Falconar; Tatyana I. Dzhivanian; Ernest A. Gould

Phylogenetic analysis of the Flavivirus genus, using either partial sequences of the non-structural 5 gene or the structural envelope gene, revealed an extensive series of clades defined by their epidemiology and disease associations. These phylogenies identified mosquito-borne, tick-borne and no-known-vector (NKV) virus clades, which could be further subdivided into clades defined by their principal vertebrate host. The mosquito-borne flaviviruses revealed two distinct epidemiological groups: (i) the neurotropic viruses, often associated with encephalitic disease in humans or livestock, correlated with the Culex species vector and bird reservoirs and (ii) the non-neurotropic viruses, associated with haemorrhagic disease in humans, correlated with the Aedes species vector and primate hosts. Thus, the tree topology describing the virus-host association may reflect differences in the feeding behaviour between Aedes and Culex mosquitoes. The tick-borne viruses also formed two distinct groups: one group associated with seabirds and the other, the tick-borne encephalitis complex viruses, associated primarily with rodents. The NKV flaviviruses formed three distinct groups: one group, which was closely related to the mosquito-borne viruses, associated with bats; a second group, which was more genetically distant, also associated with bats; and a third group associated with rodents. Each epidemiological group within the phylogenies revealed distinct geographical clusters in either the Old World or the New World, which for mosquito-borne viruses may reflect an Old World origin. The correlation between epidemiology, disease correlation and biogeography begins to define the complex evolutionary relationships between the virus, vector, vertebrate host and ecological niche.


Journal of Virology | 2010

Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates.

Sara M. Volk; Rubing Chen; Konstantin A. Tsetsarkin; A. Paige Adams; Tzintzuni Garcia; Amadou A. Sall; Farooq Nasar; Amy J. Schuh; Edward C. Holmes; Stephen Higgs; Payal D. Maharaj; Aaron C. Brault; Scott C. Weaver

ABSTRACT Chikungunya virus (CHIKV), a mosquito-borne alphavirus, has traditionally circulated in Africa and Asia, causing human febrile illness accompanied by severe, chronic joint pain. In Africa, epidemic emergence of CHIKV involves the transition from an enzootic, sylvatic cycle involving arboreal mosquito vectors and nonhuman primates, into an urban cycle where peridomestic mosquitoes transmit among humans. In Asia, however, CHIKV appears to circulate only in the endemic, urban cycle. Recently, CHIKV emerged into the Indian Ocean and the Indian subcontinent to cause major epidemics. To examine patterns of CHIKV evolution and the origins of these outbreaks, as well as to examine whether evolutionary rates that vary between enzootic and epidemic transmission, we sequenced the genomes of 40 CHIKV strains and performed a phylogenetic analysis representing the most comprehensive study of its kind to date. We inferred that extant CHIKV strains evolved from an ancestor that existed within the last 500 years and that some geographic overlap exists between two main enzootic lineages previously thought to be geographically separated within Africa. We estimated that CHIKV was introduced from Africa into Asia 70 to 90 years ago. The recent Indian Ocean and Indian subcontinent epidemics appear to have emerged independently from the mainland of East Africa. This finding underscores the importance of surveillance to rapidly detect and control African outbreaks before exportation can occur. Significantly higher rates of nucleotide substitution appear to occur during urban than during enzootic transmission. These results suggest fundamental differences in transmission modes and/or dynamics in these two transmission cycles.


The Lancet | 2016

Zika virus and microcephaly: why is this situation a PHEIC?

David L. Heymann; Abraham Hodgson; Amadou A. Sall; David O. Freedman; J. Erin Staples; Fernando Althabe; Kalpana Baruah; Ghazala Mahmud; Nyoman Kandun; Pedro Fernando da Costa Vasconcelos; Silvia Bino; K U Menon

Fil: Heymann, David L. London School of Hygiene & Tropical Medicine; Reino Unido. The Royal Institute of International Affairs; Reino Unido


PLOS ONE | 2014

Zika Virus Emergence in Mosquitoes in Southeastern Senegal, 2011

Diawo Diallo; Amadou A. Sall; Cheikh T. Diagne; Oumar Faye; Ousmane Faye; Yamar Ba; Kathryn A. Hanley; Michaela Buenemann; Scott C. Weaver; Mawlouth Diallo

Background Zika virus (ZIKV; genus Flavivirus, family Flaviviridae) is maintained in a zoonotic cycle between arboreal Aedes spp. mosquitoes and nonhuman primates in African and Asian forests. Spillover into humans has been documented in both regions and the virus is currently responsible for a large outbreak in French Polynesia. ZIKV amplifications are frequent in southeastern Senegal but little is known about their seasonal and spatial dynamics. The aim of this paper is to describe the spatio-temporal patterns of the 2011 ZIKV amplification in southeastern Senegal. Methodology/Findings Mosquitoes were collected monthly from April to December 2011 except during July. Each evening from 18∶00 to 21∶00 hrs landing collections were performed by teams of 3 persons working simultaneously in forest (canopy and ground), savannah, agriculture, village (indoor and outdoor) and barren land cover sites. Mosquitoes were tested for virus infection by virus isolation and RT-PCR. ZIKV was detected in 31 of the 1,700 mosquito pools (11,247 mosquitoes) tested: Ae. furcifer (5), Ae. luteocephalus (5), Ae. africanus (5), Ae. vittatus (3), Ae. taylori, Ae. dalzieli, Ae. hirsutus and Ae. metallicus (2 each) and Ae. aegypti, Ae. unilinaetus, Ma. uniformis, Cx. perfuscus and An. coustani (1 pool each) collected in June (3), September (10), October (11), November (6) and December (1). ZIKV was detected from mosquitoes collected in all land cover classes except indoor locations within villages. The virus was detected in only one of the ten villages investigated. Conclusions/Significance This ZIKV amplification was widespread in the Kédougou area, involved several mosquito species as probable vectors, and encompassed all investigated land cover classes except indoor locations within villages. Aedes furcifer males and Aedes vittatus were found infected within a village, thus these species are probably involved in the transmission of Zika virus to humans in this environment.


Journal of Clinical Virology | 2008

One-step RT-PCR for detection of Zika virus

Oumar Faye; Ousmane Faye; Anne Dupressoir; Manfred Weidmann; Mady Ndiaye; Amadou A. Sall

BACKGROUND Zika virus (ZIKV) is an emerging mosquito-borne flavivirus circulating in Asia and Africa. Human infection induces an influenza-like syndrome that is associated with retro-orbital pain, oedema, lymphadenopathy, or diarrhea. Diagnosis of Zika fever requires virus isolation and serology, which are time consuming or cross-reactive. OBJECTIVE To develop a one-step RT-PCR assay to detect ZIKV in human serum. STUDY DESIGN An assay targeting the envelope protein coding region was designed and evaluated for its specificity, detection limit, repeatability, and capacity to detect ZIKV isolates collected over a 40-year period from various African countries and hosts. RESULTS The assays detection limit and repeatability were respectively 7.7pfu/reaction and 100% in serum and L-15 medium; none of 19 other flaviviruses tested were detected. CONCLUSIONS The assay is rapid, sensitive, and specific to detect ZIKV in cell culture or serum, but needs to be validated for diagnosis using clinical samples.


The New England Journal of Medicine | 2016

Evaluation of Convalescent Plasma for Ebola Virus Disease in Guinea

J. van Griensven; Tansy Edwards; X de Lamballerie; Malcolm G. Semple; Pierre Gallian; Sylvain Baize; Peter Horby; Hervé Raoul; N Magassouba; Annick Antierens; C Lomas; O Faye; Amadou A. Sall; Katrien Fransen; Jozefien Buyze; Raffaella Ravinetto; Pierre Tiberghien; Yves Claeys; M De Crop; Lutgarde Lynen; Elhadj Ibrahima Bah; Peter G. Smith; Alexandre Delamou; A. De Weggheleire; Nyankoye Yves Haba

BACKGROUND In the wake of the recent outbreak of Ebola virus disease (EVD) in several African countries, the World Health Organization prioritized the evaluation of treatment with convalescent plasma derived from patients who have recovered from the disease. We evaluated the safety and efficacy of convalescent plasma for the treatment of EVD in Guinea. METHODS In this nonrandomized, comparative study, 99 patients of various ages (including pregnant women) with confirmed EVD received two consecutive transfusions of 200 to 250 ml of ABO-compatible convalescent plasma, with each unit of plasma obtained from a separate convalescent donor. The transfusions were initiated on the day of diagnosis or up to 2 days later. The level of neutralizing antibodies against Ebola virus in the plasma was unknown at the time of administration. The control group was 418 patients who had been treated at the same center during the previous 5 months. The primary outcome was the risk of death during the period from 3 to 16 days after diagnosis with adjustments for age and the baseline cycle-threshold value on polymerase-chain-reaction assay; patients who had died before day 3 were excluded. The clinically important difference was defined as an absolute reduction in mortality of 20 percentage points in the convalescent-plasma group as compared with the control group. RESULTS A total of 84 patients who were treated with plasma were included in the primary analysis. At baseline, the convalescent-plasma group had slightly higher cycle-threshold values and a shorter duration of symptoms than did the control group, along with a higher frequency of eye redness and difficulty in swallowing. From day 3 to day 16 after diagnosis, the risk of death was 31% in the convalescent-plasma group and 38% in the control group (risk difference, -7 percentage points; 95% confidence interval [CI], -18 to 4). The difference was reduced after adjustment for age and cycle-threshold value (adjusted risk difference, -3 percentage points; 95% CI, -13 to 8). No serious adverse reactions associated with the use of convalescent plasma were observed. CONCLUSIONS The transfusion of up to 500 ml of convalescent plasma with unknown levels of neutralizing antibodies in 84 patients with confirmed EVD was not associated with a significant improvement in survival. (Funded by the European Unions Horizon 2020 Research and Innovation Program and others; ClinicalTrials.gov number, NCT02342171.).


Lancet Infectious Diseases | 2015

Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study

Ousmane Faye; Pierre-Yves Boëlle; Emmanuel Heleze; Oumar Faye; Cheikh Loucoubar; N'Faly Magassouba; Barré Soropogui; Sakoba Keita; Tata Gakou; El Hadji Ibrahima Bah; Lamine Koivogui; Amadou A. Sall; Simon Cauchemez

BACKGROUND An epidemic of Ebola virus disease of unprecedented size continues in parts of west Africa. For the first time, large urban centres such as Conakry, the capital of Guinea, are affected. We did an observational study of patients with Ebola virus disease in three regions of Guinea, including Conakry, aiming to map the routes of transmission and assess the effect of interventions. METHODS Between Feb 10, 2014, and Aug 25, 2014, we obtained data from the linelist of all confirmed and probable cases in Guinea (as of Sept 16, 2014), a laboratory database of information about patients, and interviews with patients and their families and neighbours. With this information, we mapped chains of transmission, identified which setting infections most probably originated from (community, hospitals, or funerals), and computed the context-specific and overall reproduction numbers. FINDINGS Of 193 confirmed and probable cases of Ebola virus disease reported in Conakry, Boffa, and Télimélé, 152 (79%) were positioned in chains of transmission. Health-care workers contributed little to transmission. In March, 2014, individuals with Ebola virus disease who were not health-care workers infected a mean of 2·3 people (95% CI 1·6-3·2): 1·4 (0·9-2·2) in the community, 0·4 (0·1-0·9) in hospitals, and 0·5 (0·2-1·0) at funerals. After the implementation of infection control in April, the reproduction number in hospitals and at funerals reduced to lower than 0·1. In the community, the reproduction number dropped by 50% for patients that were admitted to hospital, but remained unchanged for those that were not. In March, hospital transmissions constituted 35% (seven of 20) of all transmissions and funeral transmissions constituted 15% (three); but from April to the end of the study period, they constituted only 9% (11 of 128) and 4% (five), respectively. 82% (119 of 145) of transmission occurred in the community and 72% (105) between family members. Our simulations show that a 10% increase in hospital admissions could have reduced the length of chains by 26% (95% CI 4-45). INTERPRETATION In Conakry, interventions had the potential to stop the epidemic, but reintroductions of the disease and poor cooperation of a few families led to prolonged low-level spread, showing the challenges of Ebola virus disease control in large urban centres. Monitoring of chains of transmission is crucial to assess and optimise local control strategies for Ebola virus disease. FUNDING Labex IBEID, Reacting, PREDEMICS, NIGMS MIDAS initiative, Institut Pasteur de Dakar.


Medical and Veterinary Entomology | 2005

Mosquito vectors of the 1998–1999 outbreak of Rift Valley Fever and other arboviruses (Bagaza, Sanar, Wesselsbron and West Nile) in Mauritania and Senegal

Mawlouth Diallo; P. Nabeth; K. Ba; Amadou A. Sall; Yamar Ba; Mireille Mondo; L. Girault; M. O. Abdalahi; Christian Mathiot

Abstract.  Following an outbreak of Rift Valley fever (RVF) in south‐eastern Mauritania during 1998, entomological investigations were conducted for 2 years in the affected parts of Senegal and Mauritania, spanning the Sénégal River basin. A total of 92 787 mosquitoes (Diptera: Culicidae), belonging to 10 genera and 41 species, were captured in light traps. In Senegal, Culex poicilipes (41%) and Mansonia uniformis (39%) were the most abundant species caught, whereas Aedes vexans (77%) and Cx. poicilipes (15%) predominated in Mauritania. RVF virus was isolated from 63 pools of Cx. poicilipes: 36 from Senegal in 1998 and 27 from Mauritania in 1999. These results are the first field evidence of Cx. poicilipes naturally infected with RVFV, and the first isolations of this virus from mosquitoes in Mauritania – the main West African epidemic and epizootic area. Additional arbovirus isolates comprised 25 strains of Bagaza (BAG) from Aedes fowleri, Culex neavei and Cx. poicilipes; 67 Sanar (ArD 66707) from Cx. poicilipes; 51 Wesselsbron (WSL) from Ae. vexans and 30 strains of West Nile (WN) from Ma. uniformis, showing differential specific virus–vector associations in the circulation activity of these five arboviruses.


Emerging Infectious Diseases | 2003

Amplification of the Sylvatic Cycle of Dengue Virus Type 2, Senegal, 1999–2000: Entomologic Findings and Epidemiologic Considerations

Mawlouth Diallo; Yamar Ba; Amadou A. Sall; Ousmane M. Diop; Jacques A. Ndione; Mireille Mondo; Lang Girault; Christian Mathiot

After 8 years of silence, dengue virus serotype 2 (DENV-2) reemerged in southeastern Senegal in 1999. Sixty-four DENV-2 strains were isolated in 1999 and 9 strains in 2000 from mosquitoes captured in the forest gallery and surrounding villages. Isolates were obtained from previously described vectors, Aedes furcifer, Ae. taylori, Ae. luteocephalus, and—for the first time in Senegal—from Ae. aegypti and Ae. vittatus. A retrospective analysis of sylvatic DENV-2 outbreaks in Senegal during the last 28 years of entomologic investigations shows that amplifications are periodic, with intervening, silent intervals of 5–8 years. No correlation was found between sylvatic DENV-2 emergence and rainfall amount. For sylvatic DENV-2 vectors, rainfall seems to particularly affect virus amplification that occurs at the end of the rainy season, from October to November. Data obtained from investigation of preimaginal (i.e., nonadult) mosquitoes suggest a secondary transmission cycle involving mosquitoes other than those identified previously as vectors.

Collaboration


Dive into the Amadou A. Sall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott C. Weaver

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge