Amal H. El-Kamel
Alexandria University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amal H. El-Kamel.
International Journal of Pharmaceutics | 2002
Amal H. El-Kamel
The purpose of this study was to develop Pluronic F127 (PF127) based formulations of timolol maleate (TM) aimed at enhancing its ocular bioavailability. The effect of isotonicity agents and PF127 concentrations on the rheological properties of the prepared formulations was examined. In an attempt to reduce the concentration of PF127 without compromising the in situ gelling capabilities, various viscosity enhancing agents were added to PF127 solution containing 0.5% TM. The viscosity and the ability of PF127 gels to deliver TM, in vitro, in absence and presence of various viscosity enhancing agents were also evaluated. At the used concentration, some of the examined isotonicity agents had effect on the viscosity of TM gel. However, the viscosity of gel increased as the PF127 concentrations increased. The viscosity of formulations containing thickening agents was in the order of PF-MC 3%>PF-HPMC 2%>PF-CMC 2.5%>PF127 15%. The slowest drug release was obtained from 15% PF127 formulations containing 3% methylcellulose. In vivo study showed that the ocular bioavailability of TM, measured in albino rabbits, increased by 2.5 and 2.4 fold for 25% PF127 gel formulation and 15% PF127 containing 3% methylcellulose, respectively, compared with 0.5% TM aqueous solution.
International Journal of Pharmaceutics | 2001
Amal H. El-Kamel; Magda Sokar; S.S Al Gamal; Viviane F. Naggar
A sustained release system for ketoprofen designed to increase its residence time in the stomach without contact with the mucosa was achieved through the preparation of floating microparticles by the emulsion-solvent diffusion technique. Four different ratios of Eudragit S100 (ES) with Eudragit RL (ERL) were used to form the floating microparticles. The drug retained in the floating microparticles decreased with increase in ERL content. All floating microparticle formulations showed good flow properties and packability. Scanning electron microscopy and particle size analysis revealed differences between the formulations as to their appearance and size distribution. X-ray and DSC examination showed the amorphous nature of the drug. Release rates were generally low in 0.1 N HCl especially in presence of high content of ES while in phosphate buffer pH 6.8, high amounts of ES tended to give a higher release rate. Floating ability in 0.1 N HCl, 0.1 N HCl containing 0.02% Tween 20 and simulated gastric fluid without pepsin was also tested. The formulation containing ES:ERL1:1 (FIII) exhibited high percentage of floating particles in all examined media.
Aaps Pharmsci | 2002
Amal H. El-Kamel; Magda Sokar; Viviane F. Naggar; Safaa Al Gamal
Metronidazole was formulated in mucoadhesive vaginal tablets by directly compressing the natural cationic polymer chitosan, loosely cross-linked with glutaraldehyde, together with sodium alginate with or ine cellulose (MCC). Sodium carboxymethylcellulose (CMC) was added to some of the formulations. The drug content in tablets was 20%. Drug dissolution rate studies from tablets were carried out in buffer pH 4.8 and distilled water. Swelling indices and adhesion forces were also measured for all formulations. The formula (FIII) containing 6% chitosan, 24% sodium alginate, 30% sodium CMC, and 20% MCC showed adequate release properties in both media and gave lower values of swelling index compared with the other examined formulations. FIII also proved to have good adhesion properties with minimum applied weights. Moreover, its release properties (% dissolution efficiency, DE) in buffer pH 4.8, as well as release mechanism (n values), were negligibly affected by aging. Thus, this formula may be considered a good candidate for vaginal mucoadhesive dosage forms.
Journal of Microencapsulation | 2003
Amal H. El-Kamel; O. M. N. Al-Gohary; E. A. Hosny
Alginate beads containing diltiazem hydrochloride (DTZ) were prepared by the ionotropic gelation method. The effects of various factors (alginate concentration, additives type, calcium chloride concentration and curing time) on the efficiency of drug loading were investigated. The formulation containing a mixture of 0.8% methylcellulose (MC) and 4% alginate cured in 2% calcium chloride for 6 h was chosen as the best formula regarding the loading efficiency. The release rate of DTZ from various beads formulations was investigated. The release of drug from alginate beads followed two mechanisms; by diffusion and relaxation of the polymer at pH 1.2, whilst diffusion and erosion are at pH 6.8. The in vitro release of DTZ from MC-alginate beads showed an extended release pattern which was compared with that from commercially available sustained-release (Dilzem® SR) and fast release tablets (Dilzem®). Thermal analysis revealed that the drug was molecularly dispersed in the beads matrix. Although the release characteristics of DTZ from Dilzem® SR and MC-alginate beads were completely different, the bioavailability of DTZ in dogs was comparable as measured by AUC, MRT and relative bioavailability. The absolute bioavailability of MC-alginate beads and Dilzem® SR was 88 and 93%, respectively.
Aaps Pharmscitech | 2007
Amal H. El-Kamel; Lubna Y. Ashri; Ibrahim A. Alsarra
The main objective of this study was to develop a local, oral mucoadhesive metronidazole benzoate (MET) delivery system that can be applied and removed by the patient for the treatment of periodontal diseases. Mucoadhesive micromatricial chitosan/poly(ε-caprolactone) (CH/PCL) films and chitosan films were prepared. thermal behavior, morphology, and particle size measurements were used to evaluate the prepared films. The effect of different molar masses of CH and different ratios of medium Mwt molar mass chitosan (MCH):PCL on water absorption, in vitro bioadhesion, mechanical properties, and in vitro drug release was examined. In vivo performance of the selected formulation was also evaluated. Differential scanning calorimetry examination revealed that MET existed mainly in amorphous form. Under microscopic examination, PCL microparticles were homogeneously dispersed in the films. The use of different molar masses of CH and different ratios of (MCH):PCL affected the size of the entrapped particles. Addition of PCL significantly decreased percentage water uptake and bioadhesion force compared with pure CH film. With regard to mechanical properties, the 2-layered film containing 1∶0.625 MCH:PCL had the best tensile properties. At fixed CH:PCL ratio (1∶1.25), the slowest drug release was obtained from films containing high molar mass CH. On the other hand, the 2-layered film that consisted of 1∶0.625 MCH:PCL had the slowest MET release. In vivo evaluation of the selected film revealed that metronidazole concentration in saliva over 6 hours ranged from 5 to 15 μg/mL, which was within and higher than the reported range of minimum inhibitory concentration for metronidazole. A significant in vitro/in vivo correlation under the adopted experimental conditions was obtained.
International Journal of Pharmaceutics | 2008
Amal H. El-Kamel; Alaa A.-M. Abdel-Aziz; Amal J. Fatani; Hussein I. El-Subbagh
The aim of this study was to investigate the potential of prodrugs of some non-steroidal anti-inflammatory drugs (NSAIDs) as colon targeted delivery systems for treatment of inflammatory bowel diseases. Naproxen, sulindac and flurbiprofen (Fbp) were used. The carboxylic group of those drugs was conjugated onto the amino group of l-aspartic acid or the hydroxyl group of alpha- or beta-cyclodextrin (CyD). Prodrugs hydrolysis in buffers of pH range 1.2-7.2 and in rat gastrointestinal tract homogenates and the effect of oral pretreatment of rats with clindamycin on the hydrolysis of the prodrugs was examined. Additionally, the effect of oral administration of Fbp-beta-CyD prodrug on the experimentally induced colitis in rats was evaluated. The in vivo inflammatory response was assessed macroscopically, histologically and by measurement of reduced glutathione (GSH) levels in colon tissues. No significant hydrolysis of the proposed seven prodrugs in buffers having pH range of 1.2-7.2 was observed over 72h. Negligible % of drug released from Fbp-alpha-CyD or Fbp-beta-CyD prodrugs was detected in rat stomach contents, intestinal tissues and intestinal contents homogenates. On the other hand, Fbp-alpha-CyD and Fbp-beta-CyD prodrugs released about 60% Fbp within 4h in rat colon homogenate. Oral pretreatment of rats with clindamycin significantly reduced % Fbp released from Fbp-alpha-CyD or Fbp-beta-CyD prodrugs. Oral administration of Fbp-beta-CyD to rats after induction of colitis significantly attenuated the severity of the colonic injury and reduced the score of the macroscopic and microscopic damage. Additionally, there was a significant increase in the level of GSH. The present study provided an evidence that Fbp-beta-CyD prodrug may be beneficial in treatment of inflammatory bowel disease.
Journal of Microencapsulation | 2007
Amal H. El-Kamel; Iman M. Alfagih; Ibrahim A. Alsarra
Purpose: The main objective of the study was to formulate and characterize testosterone (TS) solid lipid microparticles (SLM) to be applied as a transdermal delivery system. Methods: Testosterone SLMs were formulated using an emulsion melt homogenization method. Various types and concentrations of fatty materials, namely glyceryl monostearate (GM), glyceryl distearate (GD), stearic acid (SA) and glyceryl behanate (GB) were used. The formulations contained 2.5 or 5 mg TS g−1. Morphology, particle size, entrapment efficiency (EE), rheological properties and thermal behaviour of the prepared SLM were examined. In vitro release characteristics of TS from various prepared SLM were also evaluated over 24 h using a vertical Franz diffusion cell. In addition, the effect of storage and freeze-drying on particle size and release pattern of TS from the selected formulation was evaluated. Results: The results indicated that the type of lipid affected the morphology and particle size of SLM. A relatively high drug percentage entrapment efficiency ranging from 80.7–95.7% was obtained. Rheological studies showed plastic flow characteristics of the prepared formulations. DSC examination revealed that TS existed in amorphous form in the prepared SLM. Release studies revealed the following rank order of TS permeation through cellophane membrane after application of various formulations: 5% GM < 5% GD < 5% SA < 5% GB < 2.5% GM < 2.5% SA < 10% GD < 10% GB. The drug permeation through excised abdomen rat skin after application of 10% GB–2.5 mg TS g−1 SLM was lower than that permeated through cellophane membrane. Moreover, SLM containing 10% GB–2.5 mg TS g−1 stored at 5°C showed good stability as indicated by the release study and particle size analysis. Trehalose showed high potential as a cryoprotectant during freeze drying of the selected SLM formulation. Conclusions: The developed TS SLM delivery system seemed to be promising as a TS transdermal delivery system.
Drug Delivery | 2006
Amal H. El-Kamel; Heba Al-Dosari; Fahad I. Al-Jenoobi
Environmentally responsive gel formulation for ocular controlled delivery of carteolol hydrochloride (HCl) was developed in an attempt to improve ocular bioavailability and hence decrease its systemic absorption and side effects. The viscosity and the ability of the prepared formulations to deliver carteolol HCl in vitro and in vivo were monitored and compared with an aqueous commercial solution. The effect of polymer concentration and drug concentration on the in vitro release of carteolol HCl was examined. Gelrite formulations showed pseudoplastic behavior with thixotropic characteristics and the viscosity of the prepared systems increased as the concentration of the polymer increased. At fixed drug concentrations, as the Gelrite concentration increased, the drug release decreased. At fixed polymer concentrations, as the drug concentration increased the release of drug increased. Gelrite formulation (0.4% w/w) containing 1% drug showed significantly improved bioavailability compared with the commercial aqueous solution (Arteoptic® 1%). The developed in situ gel formulation showed potential for use as delivery systems with superior ocular bioavailability of carteolol HCl.
International Journal of Pharmaceutics | 2015
Noha S. El-Salamouni; Ragwa M. Farid; Amal H. El-Kamel; Safaa S. El-Gamal
Nanoparticulate delivery systems have recently been under consideration for topical ophthalmic drug delivery. Brimonidine base-loaded solid lipid nanoparticles and nanostructured lipid carrier formulations were prepared using glyceryl monostearate as solid lipid and were evaluated for their physical stability following sterilization by autoclaving at 121°C for 15min. The objective of this work was to evaluate the effect of autoclaving on the physical appearance, particle size, polydispersity index, zeta potential, entrapment efficiency and particle morphology of the prepared formulations, compared to non-autoclaved ones. Results showed that, autoclaving at 121°C for 15min allowed the production of physically stable formulations in nanometric range, below 500nm suitable for ophthalmic application. Moreover, the autoclaved samples appeared to be superior to non-autoclaved ones, due to their increased zeta potential values, indicating a better physical stability. As well as, increased amount of brimonidine base entrapped in the tested formulations.
Current Drug Delivery | 2008
Amal H. El-Kamel; Iman M. Alfagih; Ibrahim A. Alsarra
The main objective of the study was to investigate the effect of permeation enhancers and application of low frequency (LUS) and high frequency ultrasound (HUS) on testosterone (TS) transdermal permeation after application of testosterone solid lipid microparticles (SLM). SLM formulations contained 10% compritol and 5 mg TS /g of SLM. The permeation experiments were performed using Franz diffusion cells and abdomen rat skin. The examined permeation enhancers were 1% oleic acid (OA) or 1 % dodecylamine (DA). HUS (1 MHz) was applied in a continuous mode for 1h at intensity 0.5 W/cm(2). Different intensities and application time of pulsed LUS (20 kHz) were also examined. Additionally, the effect of combination of US and OA or DA was investigated. Skin irritation and histological changes were also evaluated. The results revealed that SLMs have an occlusive effect on the skin. Statistical analysis revealed the following order for the permeation of TS: 1% DA for 30 min>HUS +1% DA for 30 min= HUS=HUS + SLM containing 1% OA> SLM containing 1% OA=control. At total application time of LUS 6, 12, and 15 min the flux increased by 1.86, 4.63, and 4.77 fold, respectively. The enhancement effect of different intensities of LUS was not directly proportional to the magnitude of intensity. Skin exposure to HUS or LUS before application of 1% DA for 30 min had no superior enhancement effect over application of either LUS or HUS alone. Application of drug loaded SLM offered skin protection against the irritation effect produced by TS and 1% DA. Histological characteristics of the skin were affected to various extents by application of enhancers or ultrasound. In general, application of LUS gave higher TS permeation than HUS. However, safe application of LUS should be practiced by careful selection of exposure parameters.