Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aman B Saleem is active.

Publication


Featured researches published by Aman B Saleem.


Nature Neuroscience | 2016

Spike sorting for large, dense electrode arrays

Cyrille Rossant; Shabnam Kadir; Dan F. M. Goodman; John Schulman; Maximilian L D Hunter; Aman B Saleem; Andres Grosmark; Mariano Belluscio; Gh Denfield; Alexander S. Ecker; As Tolias; Samuel G. Solomon; György Buzsáki; Matteo Carandini; Kenneth D. M. Harris

Developments in microfabrication technology have enabled the production of neural electrode arrays with hundreds of closely spaced recording sites, and electrodes with thousands of sites are under development. These probes in principle allow the simultaneous recording of very large numbers of neurons. However, use of this technology requires the development of techniques for decoding the spike times of the recorded neurons from the raw data captured from the probes. Here we present a set of tools to solve this problem, implemented in a suite of practical, user-friendly, open-source software. We validate these methods on data from the cortex, hippocampus and thalamus of rat, mouse, macaque and marmoset, demonstrating error rates as low as 5%.


The Journal of Neuroscience | 2011

The Detection of Visual Contrast in the Behaving Mouse

Laura Busse; A Ayaz; Neel T. Dhruv; Steffen Katzner; Aman B Saleem; Marieke L. Schölvinck; Andrew D. Zaharia; Matteo Carandini

The mouse is becoming a key species for research on the neural circuits of the early visual system. To relate such circuits to perception, one must measure visually guided behavior and ask how it depends on fundamental stimulus attributes such as visual contrast. Using operant conditioning, we trained mice to detect visual contrast in a two-alternative forced-choice task. After 3–4 weeks of training, mice performed hundreds of trials in each session. Numerous sessions yielded high-quality psychometric curves from which we inferred measures of contrast sensitivity. In multiple sessions, however, choices were influenced not only by contrast, but also by estimates of reward value and by irrelevant factors such as recent failures and rewards. This behavior was captured by a generalized linear model involving not only the visual responses to the current stimulus but also a bias term and history terms depending on the outcome of the previous trial. We compared the behavioral performance of the mice to predictions of a simple decoder applied to neural responses measured in primary visual cortex of awake mice during passive viewing. The decoder performed better than the animal, suggesting that mice might not use optimally the information contained in the activity of visual cortex.


The Journal of Neuroscience | 2015

Cortical State Determines Global Variability and Correlations in Visual Cortex

Marieke L. Schölvinck; Aman B Saleem; Andrea Benucci; Kenneth Harris; Matteo Carandini

The response of neurons in sensory cortex to repeated stimulus presentations is highly variable. To investigate the nature of this variability, we compared the spike activity of neurons in the primary visual cortex (V1) of cats with that of their afferents from lateral geniculate nucleus (LGN), in response to similar stimuli. We found variability to be much higher in V1 than in LGN. To investigate the sources of the additional variability, we measured the spiking activity of large V1 populations and found that much of the variability was shared across neurons: the variable portion of the responses of one neuron could be well predicted from the summed activity of the rest of the neurons. Variability thus mostly reflected global fluctuations affecting all neurons. The size and prevalence of these fluctuations, both in responses to stimuli and in ongoing activity, depended on cortical state, being larger in synchronized states than in more desynchronized states. Contrary to previous reports, these fluctuations invested the overall population, regardless of preferred orientation. The global fluctuations substantially increased variability in single neurons and correlations among pairs of neurons. Once this effect was removed, pairwise correlations were reduced and were similar regardless of cortical state. These results highlight the importance of cortical state in controlling cortical operation and can help reconcile previous studies, which differed widely in their estimate of neuronal variability and pairwise correlations.


Current Biology | 2013

Locomotion Controls Spatial Integration in Mouse Visual Cortex

A Ayaz; Aman B Saleem; Marieke L. Schölvinck; Matteo Carandini

Summary Growing evidence indicates that responses in sensory cortex are modulated by factors beyond direct sensory stimulation [1–8]. In primary visual cortex (V1), for instance, responses increase with locomotion [9, 10]. Here we show that this increase is accompanied by a profound change in spatial integration. We recorded from V1 neurons in head-fixed mice placed on a spherical treadmill. We characterized spatial integration and found that the responses of most neurons were suppressed by large stimuli. As in primates [11, 12], this surround suppression increased with stimulus contrast. These effects were captured by a divisive normalization model [13, 14], where the numerator originates from a central region driving the neuron and the denominator originates from a larger suppressive field. We then studied the effects of locomotion and found that it markedly reduced surround suppression, allowing V1 neurons to integrate over larger regions of visual space. Locomotion had two main effects: it increased spontaneous activity, and it weakened the suppressive signals mediating normalization, relative to the driving signals. We conclude that a fundamental aspect of visual processing, spatial integration, is controlled by an apparently unrelated factor, locomotion. This control might operate through the mechanisms that are in place to deliver surround suppression.


Nature Neuroscience | 2013

Adaptation maintains population homeostasis in primary visual cortex

Andrea Benucci; Aman B Saleem; Matteo Carandini

Sensory systems exhibit mechanisms of neural adaptation, which adjust neuronal activity on the basis of recent stimulus history. In primary visual cortex (V1) in particular, adaptation controls the responsiveness of individual neurons and shifts their visual selectivity. What benefits does adaptation confer on a neuronal population? We measured adaptation in the responses of populations of cat V1 neurons to stimulus ensembles with markedly different statistics of stimulus orientation. We found that adaptation served two homeostatic goals. First, it maintained equality in the time-averaged responses across the population. Second, it maintained independence in selectivity across the population. Adaptation scaled and distorted population activity according to a simple multiplicative rule that depended on neuronal orientation preference and on stimulus orientation. We conclude that adaptation in V1 acts as a mechanism of homeostasis, enforcing a tendency toward equality and independence in neural activity across the population.


eLife | 2015

Hippocampal place cells construct reward related sequences through unexplored space.

H. Freyja Ólafsdóttir; Caswell Barry; Aman B Saleem; Demis Hassabis; Hugo J. Spiers

Dominant theories of hippocampal function propose that place cell representations are formed during an animals first encounter with a novel environment and are subsequently replayed during off-line states to support consolidation and future behaviour. Here we report that viewing the delivery of food to an unvisited portion of an environment leads to off-line pre-activation of place cells sequences corresponding to that space. Such ‘preplay’ was not observed for an unrewarded but otherwise similar portion of the environment. These results suggest that a hippocampal representation of a visible, yet unexplored environment can be formed if the environment is of motivational relevance to the animal. We hypothesise such goal-biased preplay may support preparation for future experiences in novel environments. DOI: http://dx.doi.org/10.7554/eLife.06063.001


Neuron | 2017

Subcortical Source and Modulation of the Narrowband Gamma Oscillation in Mouse Visual Cortex

Aman B Saleem; Anthony D Lien; Michael Krumin; Bilal Haider; Miroslav Román Rosón; A Ayaz; Kimberley Reinhold; Laura Busse; Matteo Carandini; Kenneth D. M. Harris

Summary Primary visual cortex exhibits two types of gamma rhythm: broadband activity in the 30–90 Hz range and a narrowband oscillation seen in mice at frequencies close to 60 Hz. We investigated the sources of the narrowband gamma oscillation, the factors modulating its strength, and its relationship to broadband gamma activity. Narrowband and broadband gamma power were uncorrelated. Increasing visual contrast had opposite effects on the two rhythms: it increased broadband activity, but suppressed the narrowband oscillation. The narrowband oscillation was strongest in layer 4 and was mediated primarily by excitatory currents entrained by the synchronous, rhythmic firing of neurons in the lateral geniculate nucleus (LGN). The power and peak frequency of the narrowband gamma oscillation increased with light intensity. Silencing the cortex optogenetically did not abolish the narrowband oscillation in either LGN firing or cortical excitatory currents, suggesting that this oscillation reflects unidirectional flow of signals from thalamus to cortex.


The Journal of Neuroscience | 2017

Sensation during Active Behaviors

Laura Busse; Jessica A. Cardin; M. Eugenia Chiappe; Michael M. Halassa; Matthew J. McGinley; Takayuki Yamashita; Aman B Saleem

A substantial portion of our sensory experience happens during active behaviors such as walking around or paying attention. How do sensory systems work during such behaviors? Neural processing in sensory systems can be shaped by behavior in multiple ways ranging from a modulation of responsiveness or sharpening of tuning to a dynamic change of response properties or functional connectivity. Here, we review recent findings on the modulation of sensory processing during active behaviors in different systems: insect vision, rodent thalamus, and rodent sensory cortices. We discuss the circuit-level mechanisms that might lead to these modulations and their potential role in sensory function. Finally, we highlight the open questions and future perspectives of this exciting new field.


Nature | 2018

Coherent encoding of subjective spatial position in visual cortex and hippocampus

Aman B Saleem; E. Mika Diamanti; Julien Fournier; Kenneth D. Harris; Matteo Carandini

A major role of vision is to guide navigation, and navigation is strongly driven by vision1–4. Indeed, the brain’s visual and navigational systems are known to interact5,6, and signals related to position in the environment have been suggested to appear as early as in the visual cortex6,7. Here, to establish the nature of these signals, we recorded in the primary visual cortex (V1) and hippocampal area CA1 while mice traversed a corridor in virtual reality. The corridor contained identical visual landmarks in two positions, so that a purely visual neuron would respond similarly at those positions. Most V1 neurons, however, responded solely or more strongly to the landmarks in one position rather than the other. This modulation of visual responses by spatial location was not explained by factors such as running speed. To assess whether the modulation is related to navigational signals and to the animal’s subjective estimate of position, we trained the mice to lick for a water reward upon reaching a reward zone in the corridor. Neuronal populations in both CA1 and V1 encoded the animal’s position along the corridor, and the errors in their representations were correlated. Moreover, both representations reflected the animal’s subjective estimate of position, inferred from the animal’s licks, better than its actual position. When animals licked in a given location—whether correctly or incorrectly—neural populations in both V1 and CA1 placed the animal in the reward zone. We conclude that visual responses in V1 are controlled by navigational signals, which are coherent with those encoded in hippocampus and reflect the animal’s subjective position. The presence of such navigational signals as early as a primary sensory area suggests that they permeate sensory processing in the cortex.When running through a virtual reality corridor, a mouse’s position is represented in both the hippocampus (as expected) and the primary visual cortex, for places that are visually identical.


bioRxiv | 2016

Origin and modulation of the narrowband gamma oscillation in the mouse visual system

Aman B Saleem; Anthony D Lien; Michael Krumin; Bilal Haider; Miroslav Román Rosón; Asli Ayaz; Kimberley Reinhold; Laura Busse; Matteo Carandini; Kenneth D. M. Harris

Primary visual cortex (V1) exhibits two types of gamma rhythm: broadband activity in the 30–90 Hz range, and a narrowband oscillation seen in mice at frequencies close to 60 Hz. We investigated the sources of the narrowband gamma oscillation, the factors modulating its strength, and its relationship to broadband gamma activity. Narrowband and broadband gamma power were uncorrelated. Increasing visual contrast had opposite effects on the two rhythms: it increased broadband activity, but suppressed the narrowband oscillation. The narrowband oscillation was strongest in layer 4, and was mediated primarily by excitatory currents entrained by the synchronous, rhythmic firing of neurons in the lateral geniculate nucleus (LGN). The power and peak frequency of the narrowband gamma oscillation increased with light intensity. Silencing the cortex optogenetically did not affect narrowband oscillation in either LGN firing or cortical excitatory currents, suggesting that this oscillation reflects unidirectional flow of signals from thalamus to cortex. Highlights •Local field potential in mouse primary visual cortex exhibits a pronounced narrowband gamma oscillation close to 60 Hz. •Narrowband gamma is highest in the thalamorecipient layer 4 •Narrowband gamma increases with light intensity and arousal state, and is suppressed by visual contrast. •Lateral geniculate nucleus neurons fire synchronously at the narrowband gamma frequency, independent of V1 activity.

Collaboration


Dive into the Aman B Saleem's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A Ayaz

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Laura Busse

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Michael Krumin

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julien Fournier

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge