Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aman Khan is active.

Publication


Featured researches published by Aman Khan.


Bioresource Technology | 2016

A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium

Haiying Huang; Kejia Wu; Aman Khan; Yiming Jiang; Zhenmin Ling; Pu Liu; Yong Chen; Xuanyu Tao; Xiangkai Li

Combined pollutants with polycyclic aromatic hydrocarbons (PAHs) and heavy metals have been identified as toxic and unmanageable contaminates. In this work, Pseudomonas gessardii strain LZ-E isolated from wastewater discharge site of a petrochemical company degrades naphthalene and reduces Cr(VI) simultaneously. 95% of 10mgL(-1) Cr(VI) was reduced to Cr(III) while 77% of 800mgL(-1) naphthalene was degraded when strain LZ-E was incubated in BH medium for 48h. Furthermore, naphthalene promotes Cr(VI) reduction in strain LZ-E as catechol and phthalic acid produced in naphthalene degradation are able to reduce Cr(VI) abiotically. An aerated bioreactor system was setup to test strain LZ-Es remediation ability. Strain LZ-E continuously remediated naphthalene and Cr(VI) at rates of 15mgL(-1)h(-1) and 0.20mgL(-1)h(-1) of 800mgL(-1) naphthalene and 10mgL(-1) Cr(VI) addition with eight batches in 16days. In summary, strain LZ-E is a potential applicant for combined pollution remediation.


Biosensors and Bioelectronics | 2016

A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell

Zhengjun Chen; Yongyan Niu; Shuai Zhao; Aman Khan; Zhenmin Ling; Yong Chen; Pu Liu; Xiangkai Li

P-nitrophenol is one of the most common contaminants in chemical industrial wastewater, and in situ real-time monitoring of PNP cannot be achieved by conventional analytical techniques. Here, a two-chamber microbial fuel cell with an aerobic anode chamber was tested as a biosensor for in situ real-time monitoring of PNP. Pseudomonas monteilii LZU-3, which was used as the biological recognition element, can form a biofilm on the anode electrode using PNP as a sole substrate. The optimal operation parameters of the biosensor were as follows: external resistance 1000Ω, pH 7.8, temperature 30°C, and maximum PNP concentration 50mgL(-1). Under these conditions, the maximum voltages showed a linear relationship with PNP concentrations ranging from 15±5 to 44±4.5mgL(-1). Furthermore, we developed a novel portable device for in situ real-time monitoring of PNP. When the device was applied to measure PNP in wastewater containing various additional aromatic compounds and metal ions, the performance of the biosensor was not affected and the correlation between the maximum voltages and the PNP concentrations ranging from 9±4mgL(-1) to 36 ± 5mgL(-1) was conserved. The results demonstrated that the MFC biosensor provides a rapid and cost-efficient analytical method for real-time monitoring of toxic and recalcitrant pollutants in environmental samples.


Bioresource Technology | 2018

A critical review on the interaction of substrate nutrient balance and microbial community structure and function in anaerobic co-digestion.

Rong Xu; Kai Zhang; Pu Liu; Aman Khan; Jian Xiong; Fake Tian; Xiangkai Li

Anaerobic co-digestion generally results in a higher yield of biogas than mono-digestion, hence co-digestion has become a topic of general interest in recent studies of anaerobic digestion. Compared with mono-digestion, co-digestion utilizes multiple substrates. The balance of substrate nutrient in co-digestion comprises better adjustments of C/N ratio, pH, moisture, trace elements, and dilution of toxic substances. All of these changes could result in positive shifts in microbial community structure and function in the digestion processes and consequent augmentation of biogas production. Nevertheless, there have been few reviews on the interaction of nutrient and microbial community in co-digestions. The objective of this review is to investigate recent achievements and perspectives on the interaction of substrate nutrient balance and microbial community structure and function. This may provide valuable information on the optimization of combinations of substrates and prediction of bioreactor performance.


Scientific Reports | 2016

Improving methane production in cow dung and corn straw co-fermentation systems via enhanced degradation of cellulose by cabbage addition

Wenyang Wu; Yong Chen; Shah Faisal; Aman Khan; Zhengjun Chen; Zhenmin Ling; Pu Liu; Xiangkai Li

The effects of cabbage waste (CW) addition on methane production in cow dung and corn straw co-fermentation systems were investigated. Four experimental groups, each containing 55 g of substrate, were set up as follows: 100% cow dung (C); 36% cabbage and 64% cow dung (CC); 36% straw and 64% cow dung (SC); and 18% cabbage, 18% straw, and 64% cow dung (CSC). After seven days of fermentation, the maximum methane yield was 134 mL in the CSC group, which was 2.81-fold, 1.78-fold, and 1340-fold higher than that obtained in the CC, SC, and C groups, respectively. CW treatment of the CSC group enhanced cellulase activity and enriched culturable cellulose-degrading bacterial strains. Miseq sequencing data revealed that the predominant phylum in the CSC group was Bacteroidetes, which contains most of the cellulose-degrading bacteria. Our results suggested that CW treatment elevated cellulose degradation and promoted methane production.


Sensors | 2018

A Novel Early Warning System Based on a Sediment Microbial Fuel Cell for In Situ and Real Time Hexavalent Chromium Detection in Industrial Wastewater

Shuai Zhao; Pu Liu; Yongyan Niu; Zhengjun Chen; Aman Khan; Pengyun Zhang; Xiangkai Li

Hexavalent chromium (Cr(VI)) is a well-known toxic heavy metal in industrial wastewater, but in situ and real time monitoring cannot be achieved by current methods used during industrial wastewater treatment processes. In this study, a Sediment Microbial Fuel Cell (SMFC) was used as a biosensor for in situ real-time monitoring of Cr(VI), which was the organic substrate is oxidized in the anode and Cr(VI) is reduced at the cathode simultaneously. The pH 6.4 and temperature 25 °C were optimal conditions for the operation. Under the optimal conditions, linearity (R2 = 0.9935) of the generated voltage was observed in the Cr(VI) concentration range from 0.2 to 0.7 mg/L. The system showed high specificity for Cr(VI), as other co-existing ions such as Cu2+, Zn2+, and Pb2+ did not interfere with Cr(VI) detection. In addition, when the sediment MFC-based biosensor was applied for measuring Cr(VI) in actual wastewater samples, a low deviation (<8%) was obtained, which indicated its potential as a reliable biosensor device. MiSeq sequencing results showed that electrochemically active bacteria (Geobacter and Pseudomonas) were enriched at least two-fold on the biofilm of the anode in the biosensor as compared to the SMFC without Cr(VI). Cyclic voltammetry curves indicated that a pair of oxidation/reduction peaks appeared at −111 mV and 581 mV, respectively. These results demonstrated that the proposed sediment microbial fuel cell-based biosensor can be applied as an early warning device for real time in situ detection of Cr(VI) in industrial wastewaters.


Frontiers in Microbiology | 2018

Microbial Community Structure and Function Indicate the Severity of Chromium Contamination of the Yellow River

Yaxin Pei; Zhengsheng Yu; Jing Ji; Aman Khan; Xiangkai Li

The Yellow River is the most important water resource in northern China. In the recent past, heavy metal contamination has become severe due to industrial processes and other anthropogenic activities. In this study, riparian soil samples with varying levels of chromium (Cr) pollution severity were collected along the Gansu industrial reach of the Yellow River, including samples from uncontaminated sites (XC, XGU), slightly contaminated sites (LJX, XGD), and heavily contaminated sites (CG, XG). The Cr concentrations of these samples varied from 83.83 mg⋅kg-1 (XGU) to 506.58 mg⋅kg-1 (XG). The chromate [Cr (VI)] reducing ability in the soils collected in this study followed the sequence of the heavily contaminated > slightly contaminated > the un-contaminated. Common Cr remediation genes chrA and yieF were detected in the XG and CG samples. qRT-PCR results showed that the expression of chrA was up-regulated four and threefold in XG and CG samples, respectively, whereas the expression of yieF was up-regulated 66- and 7-fold in the same samples after 30 min treatment with Cr (VI). The copy numbers of chrA and yieF didn’t change after 35 days incubation with Cr (VI). The microbial communities in the Cr contaminated sampling sites were different from those in the uncontaminated samples. Especially, the relative abundances of Firmicutes and Bacteroidetes were higher while Actinobacteria was lower in the contaminated group than uncontaminated group. Further, potential indicator species, related to Cr such as Cr-remediation genera (Geobacter, PSB-M-3, Flavobacterium, and Methanosarcina); the Cr-sensitive genera (Skermanella, Iamia, Arthrobacter, and Candidatus Nitrososphaera) were also identified. These data revealed that Cr shifted microbial composition and function. Further, Cr (VI) reducing ability could be related with the expression of Cr remediation genes.


Scientific Reports | 2017

The naphthalene catabolic protein NahG plays a key role in hexavalent chromium reduction in Pseudomonas brassicacearum LZ-4

Haiying Huang; Xuanyu Tao; Yiming Jiang; Aman Khan; Qi Wu; Xuan Yu; Dan Wu; Yong Chen; Zhenmin Ling; Pu Liu; Xiangkai Li

Soil contamination by PAH and heavy metals is a growing problem. Here, we showed that a new isolate, Pseudomonas brassicacearum strain LZ-4, can simultaneously degrade 98% of 6 mM naphthalene and reduce 92.4% of 500 μM hexavalent chromium [Cr (VI)] within 68 h. A draft genome sequence of strain LZ-4 (6,219,082 bp) revealed all the genes in the naphthalene catabolic pathway and some known Cr (VI) reductases. Interestingly, genes encoding naphthalene pathway components were upregulated in the presence of Cr (VI), and Cr (VI) reduction was elevated in the presence of naphthalene. We cloned and expressed these naphthalene catabolic genes and tested for Cr (VI) reduction, and found that NahG reduced 79% of 100 μM Cr (VI) in 5 minutes. Additionally, an nahG deletion mutant lost 52% of its Cr (VI) reduction ability compared to that of the wild-type strain. As nahG encodes a salicylate hydroxylase with flavin adenine dinucleotide (FAD) as a cofactor for electron transfer, Cr (VI) could obtain electrons from NADH through NahG-associated FAD. To the best of our knowledge, this is the first report of a protein involved in a PAH-degradation pathway that can reduce heavy metals, which provides new insights into heavy metal-PAH contamination remediation.


Evidence-based Complementary and Alternative Medicine | 2017

In Vitro Antioxidant and Antimicrobial Activities of Ephedra gerardiana (Root and Stem) Crude Extract and Fractions

Aman Khan; Gul Jan; Afsar Khan; Farzana Gul Jan; Ali Bahadur; Muhammad Danish

The utilization of medicinal plants to treat infectious disease is a common practice in developing countries worldwide. The present study was aimed at evaluating the crude extracts of Ephedra gerardiana (root and stem) with different chemicals for antioxidant and antimicrobial (fungal and bacterial) potential. The results revealed that the ethyl acetate fractions of E. gerardiana (root and stem) have significant free radical scavenging potential with values 2.96 ± 0.39 and 2.73 ± 0.84 while n-butanol and aqueous fractions showed IC502.69 ± 0.26 and 3.44 ± 0.69 µg/ml in stem. Furthermore, crude extract and fractions also revealed promising antibacterial activities against all tested microbial strains while aqueous fraction showed no activities against Bacillus subtilis, Kleibsiella pneumoniae, and Pseudomonas aeruginosa. Interestingly, all crude extracts and fractions were nonactive against fungal strain, Aspergillus niger and Aspergillus flavus, as compare to control. In summary, the Ephedra gerardiana (root and stem) extract and fraction possess antioxidant activities, which might be helpful in preventing or slowing the progress of various oxidative stresses, suggested to be a strong pharmaceutical agent.


Science of The Total Environment | 2019

Using nano-attapulgite clay compounded hydrophilic urethane foams (AT/HUFs) as biofilm support enhances oil-refinery wastewater treatment in a biofilm membrane bioreactor.

Yiming Jiang; Aman Khan; Haiying Huang; Yanrong Tian; Xuan Yu; Qiang Xu; Lichao Mou; Jianguo Lv; Pengyun Zhang; Pu Liu; Li Deng; Xiangkai Li

Petroleum refinery wastewater (PRW) treatments based on biofilm membrane bioreactor (BF-MBR) technology is an ideal approach and biofilm supporting material is a critical factor. In this study, BF-MBR with nano-attapulgite clay compounded hydrophilic urethane foams (AT/HUFs) as a biofilm support was used to treat PRW with a hydraulic retention time of 5 h. The removal rate of 500 mg/L chemical oxygen demand (COD), 15 mg/L NH4+ and 180 NTU of turbidity were 99.73%, 97.48% and 99.99%, which were 23%, 20%, and 6% higher than in the control bioreactor, respectively. These results were comparatively higher than that observed for the sequencing batch reactor (SBR). The death rate of the Spirodela polyrrhiza (L.) irrigated with BF-MBR-treated water was 4.44%, which was similar to that of the plants irrigated with tap water (3.33%) and SBR-treated water (5.56%), but significantly lower than that irrigated with raw water (84.44%). The counts demonstrated by qPCR for total bacteria, denitrifiers, nitrite oxidizing bacteria, ammonia oxidizing bacteria, and ammonia-oxidizing archaea were also higher in BF-MBR than those obtained by SBR. Moreover, the results of 16 s rRNA sequencing have demonstrated that the wastewater remediation microbes were enriched in AT/HUFs, e.g., Acidovorax can degrade polycyclic aromatic hydrocarbons, and Sulfuritalea is an efficient nitrite degrader. In summary, BF-MBR using AT/HUF as a biofilm support improves microbiome of the actived sludge and is reliable for oil-refinery wastewater treatment.


Bioresource Technology | 2018

Lignin depolymerization and utilization by bacteria

Rong Xu; Kai Zhang; Pu Liu; Huawen Han; Shuai Zhao; Apurva Kakade; Aman Khan; Daolin Du; Xiangkai Li

Lignin compound wastes are generated as a result of agricultural and industrial practices. Microorganism-mediated bio-catalytic processes can depolymerize and utilize lignin eco-friendly. Although fungi have been studied since several decades for their ability to depolymerize lignin, strict growth conditions of fungus limit its industrial application. Compared with fungi, bacteria can tolerate wider pH, temperature, oxygen ranges and are easy to manipulate. Several studies have focused on bacteria involved in the process of lignin depolymerization and utilization. Pseudomonas have been used for paper mill wastewater treatment while Rhodococcus are widely reported to accumulate lipid. In this review, the recent studies on bacterial utilization in paper wastewater treatment, lignin conversion to biofuels, bioplastic, biofertilizers and other value-added chemicals are summarized. As bacteria possess remarkable advantages in industrial production, they may play a promising role in the future commercial lignin utilization.

Collaboration


Dive into the Aman Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge