Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda A. Watkins is active.

Publication


Featured researches published by Amanda A. Watkins.


Journal of Immunology | 2010

IFN Regulatory Factor 5 Is Required for Disease Development in the FcγRIIB−/−Yaa and FcγRIIB−/− Mouse Models of Systemic Lupus Erythematosus

Christophe Richez; Kei Yasuda; Ramon G. Bonegio; Amanda A. Watkins; Tamar Aprahamian; Patricia Busto; Rocco J. Richards; Chih Long Liu; Regina K. Cheung; Paul J. Utz; Ann Marshak-Rothstein; Ian R. Rifkin

Polymorphisms in the transcription factor IFN regulatory factor 5 (IRF5) are strongly associated in human genetic studies with an increased risk of developing the autoimmune disease systemic lupus erythematosus. However, the biological role of IRF5 in lupus pathogenesis has not previously been tested in an animal model. In this study, we show that IRF5 is absolutely required for disease development in the FcγRIIB−/−Yaa and FcγRIIB−/− lupus models. In contrast to IRF5-sufficient FcγRIIB−/−Yaa mice, IRF5-deficient FcγRIIB−/−Yaa mice do not develop lupus manifestations and have a phenotype comparable to wild-type mice. Strikingly, full expression of IRF5 is required for the development of autoimmunity, as IRF5 heterozygotes had dramatically reduced disease. One effect of IRF5 is to induce the production of the type I IFN, IFN-α, a cytokine implicated in lupus pathogenesis. To address the mechanism by which IRF5 promotes disease, we evaluated FcγRIIB−/−Yaa mice lacking the type I IFN receptor subunit 1. Unlike the IRF5-deficient and IRF5-heterozygous FcγRIIB−/−Yaa mice, type I IFN receptor subunit 1-deficient FcγRIIB−/−Yaa mice maintained a substantial level of residual disease. Furthermore, in FcγRIIB−/− mice lacking Yaa, IRF5-deficiency also markedly reduced disease manifestations, indicating that the beneficial effects of IRF5 deficiency in FcγRIIB−/−Yaa mice are not due only to inhibition of the enhanced TLR7 signaling associated with the Yaa mutation. Overall, we demonstrate that IRF5 plays an essential role in lupus pathogenesis in murine models and that this is mediated through pathways beyond that of type I IFN production.


Journal of Immunology | 2009

TLR4 ligands induce IFN-alpha production by mouse conventional dendritic cells and human monocytes after IFN-beta priming.

Christophe Richez; Kei Yasuda; Amanda A. Watkins; Shizuo Akira; Robert Lafyatis; Jean Maguire van Seventer; Ian R. Rifkin

Exacerbation of disease in systemic lupus erythematosus (SLE) is associated with bacterial infection. In conventional dendritic cells (cDCs), the TLR4 ligand bacterial LPS induces IFN-β gene expression but does not induce IFN-α. We hypothesized that when cDCs are primed by cytokines, as may frequently be the case in SLE, LPS would then induce the production of IFN-α, a cytokine believed to be important in lupus pathogenesis. In this study we show that mouse cDCs and human monocytes produce abundant IFN-α following TLR4 engagement whether the cells have been pretreated either with IFN-β or with a supernatant from DCs activated by RNA-containing immune complexes from lupus patients. This TLR4-induced IFN-α induction is mediated by both an initial TRIF-dependent pathway and a subsequent MyD88-dependent pathway, in contrast to TLR3-induced IFN-α production, which is entirely TRIF-dependent. There is also a distinct requirement for IFN regulatory factors (IRFs), with LPS-induced IFN-α induction being entirely IRF7- and partially IRF5-dependent, in contrast to LPS -induced IFN-β gene induction which is known to be IRF3-dependent but largely IRF7-independent. This data demonstrates a novel pathway for IFN-α production by cDCs and provides one possible explanation for how bacterial infection might precipitate disease flares in SLE.


International Immunology | 2013

Phenotype and function of B cells and dendritic cells from interferon regulatory factor 5-deficient mice with and without a mutation in DOCK2

Kei Yasuda; Kerstin Nundel; Amanda A. Watkins; Tania Dhawan; Ramon G. Bonegio; Jessalyn Ubellacker; Ann Marshak-Rothstein; Ian R. Rifkin

Interferon regulatory factor 5-deficient (IRF5 (-/-) ) mice have been used for many studies of IRF5 biology. A recent report identifies a mutation in dedicator of cytokinesis 2 (DOCK2) as being responsible for the abnormal B-cell development phenotype observed in the IRF5 (-/-) line. Both dedicator of cytokinesis 2 (DOCK2) and IRF5 play important roles in immune cell function, raising the issue of whether immune effects previously associated with IRF5 are due to IRF5 or DOCK2. Here, we defined the insertion end-point of the DOCK2 mutation and designed a novel PCR to detect the mutation in genomic DNA. We confirmed the association of the DOCK2 mutation and the abnormal B-cell phenotype in our IRF5 (-/-) line and also established another IRF5 (-/-) line without the DOCK2 mutation. These two lines were used to compare the role of IRF5 in dendritic cells (DCs) and B cells in the presence or absence of the DOCK2 mutation. IRF5 deficiency reduces IFN-α, IFN-β and IL-6 production by Toll-like receptor 9 (TLR9)- and TLR7-stimulated DCs and reduces TLR7- and TLR9-induced IL-6 production by B cells to a similar extent in the two lines. Importantly however, IRF5 (-/-) mice with the DOCK2 mutation have higher serum levels of IgG1 and lower levels of IgG2b, IgG2a/c and IgG3 than IRF5 (-/-) mice without the DOCK2 mutation, suggesting that the DOCK2 mutation confers additional Th2-type effects. Overall, these studies help clarify the function of IRF5 in B cells and DCs in the absence of the DOCK2 mutation. In addition, the PCR described will be useful for other investigators using the IRF5 (-/-) mouse line.


Journal of Immunology | 2015

IRF5 Deficiency Ameliorates Lupus but Promotes Atherosclerosis and Metabolic Dysfunction in a Mouse Model of Lupus-Associated Atherosclerosis

Amanda A. Watkins; Kei Yasuda; Gabriella E. Wilson; Tamar Aprahamian; Yao Xie; Elena Maganto-Garcia; Prachi Shukla; Lillian Oberlander; Bari Laskow; Hanni Menn-Josephy; Yuanyuan Wu; Pierre Duffau; Susan K. Fried; Andrew H. Lichtman; Ramon G. Bonegio; Ian R. Rifkin

Premature atherosclerosis is a severe complication of lupus and other systemic autoimmune disorders. Gain-of-function polymorphisms in IFN regulatory factor 5 (IRF5) are associated with an increased risk of developing lupus, and IRF5 deficiency in lupus mouse models ameliorates disease. However, whether IRF5 deficiency also protects against atherosclerosis development in lupus is not known. In this study, we addressed this question using the gld.apoE−/− mouse model. IRF5 deficiency markedly reduced lupus disease severity. Unexpectedly, despite the reduction in systemic immune activation, IRF5-deficient mice developed increased atherosclerosis and also exhibited metabolic dysregulation characterized by hyperlipidemia, increased adiposity, and insulin resistance. Levels of the atheroprotective cytokine IL-10 were reduced in aortae of IRF5-deficient mice, and in vitro studies demonstrated that IRF5 is required for IL-10 production downstream of TLR7 and TLR9 signaling in multiple immune cell types. Chimera studies showed that IRF5 deficiency in bone marrow–derived cells prevents lupus development and contributes in part to the increased atherosclerosis. Notably, IRF5 deficiency in non–bone marrow–derived cells also contributes to the increased atherosclerosis through the generation of hyperlipidemia and increased adiposity. Together, our results reveal a protective role for IRF5 in lupus-associated atherosclerosis that is mediated through the effects of IRF5 in both immune and nonimmune cells. These findings have implications for the proposed targeting of IRF5 in the treatment of autoimmune disease as global IRF5 inhibition may exacerbate cardiovascular disease in these patients.


PLOS ONE | 2014

Interferon regulatory factor-5 deficiency ameliorates disease severity in the MRL/lpr mouse model of lupus in the absence of a mutation in DOCK2.

Kei Yasuda; Amanda A. Watkins; Guneet S. Kochar; Gabriella E. Wilson; Bari Laskow; Christophe Richez; Ramon G. Bonegio; Ian R. Rifkin

Interferon regulatory factor 5 (IRF5) polymorphisms are strongly associated with an increased risk of developing the autoimmune disease systemic lupus erythematosus. In mouse lupus models, IRF5-deficiency was shown to reduce disease severity consistent with an important role for IRF5 in disease pathogenesis. However these mouse studies were confounded by the recent demonstration that the IRF5 knockout mouse line contained a loss-of-function mutation in the dedicator of cytokinesis 2 (DOCK2) gene. As DOCK2 regulates lymphocyte trafficking and Toll-like receptor signaling, this raised the possibility that some of the protective effects attributed to IRF5 deficiency in the mouse lupus models may instead have been due to DOCK2 deficiency. We have therefore here evaluated the effect of IRF5-deficiency in the MRL/lpr mouse lupus model in the absence of the DOCK2 mutation. We find that IRF5-deficient (IRF5−/−) MRL/lpr mice develop much less severe disease than their IRF5-sufficient (IRF5+/+) littermates. Despite markedly lower serum levels of anti-nuclear autoantibodies and reduced total splenocyte and CD4+ T cell numbers, IRF5−/− MRL/lpr mice have similar numbers of all splenic B cell subsets compared to IRF5+/+ MRL/lpr mice, suggesting that IRF5 is not involved in B cell development up to the mature B cell stage. However, IRF5−/− MRL/lpr mice have greatly reduced numbers of spleen plasmablasts and bone marrow plasma cells. Serum levels of B lymphocyte stimulator (BLyS) were markedly elevated in the MRL/lpr mice but no effect of IRF5 on serum BLyS levels was seen. Overall our data demonstrate that IRF5 contributes to disease pathogenesis in the MRL/lpr lupus model and that this is due, at least in part, to the role of IRF5 in plasma cell formation. Our data also suggest that combined therapy targeting both IRF5 and BLyS might be a particularly effective therapeutic approach in lupus.


Arthritis & Rheumatism | 2015

Promotion of Inflammatory Arthritis by Interferon Regulatory Factor 5 in a Mouse Model.

Pierre Duffau; Hanni Menn-Josephy; Carla M. Cuda; Salina Dominguez; Tamar Aprahamian; Amanda A. Watkins; Kei Yasuda; Paul A. Monach; Robert Lafyatis; Lisa M. Rice; G. Kenneth Haines; Ellen M. Gravallese; Rebecca Baum; Christophe Richez; Harris Perlman; Ramon G. Bonegio; Ian R. Rifkin

Polymorphisms in the transcription factor interferon regulatory factor 5 (IRF5) are associated with an increased risk of developing rheumatoid arthritis (RA). This study was undertaken to determine the role of IRF5 in a mouse model of arthritis development.


Journal of Immunology | 2015

Inhibition of Type 4 Cyclic Nucleotide Phosphodiesterase Blocks Intracellular TLR Signaling in Chronic Lymphocytic Leukemia and Normal Hematopoietic Cells

Ying Tan; Amanda A. Watkins; Benjamin B. Freeman; John A. Meyers; Ian R. Rifkin; Adam Lerner

A subset of chronic lymphocytic leukemia (CLL) BCRs interacts with Ags expressed on apoptotic cells, suggesting that CLL BCRs have the potential to internalize apoptotic cell RNA- or DNA-containing fragments with resultant activation of TLR7 or TLR9, respectively. By blocking cAMP degradation, type 4 cAMP phosphodiesterase (PDE4) inhibitors activate cAMP-mediated signaling and induce apoptosis in CLL cells. In this study, we show that autologous irradiated leukemic cells induce proliferation in CLL cells and that such proliferation is blocked by a TLR7/8/9 inhibitor, by DNase, and by the PDE4 inhibitor rolipram. Rolipram also inhibited CLL cell proliferation induced by synthetic TLR7 and TLR9 agonists, as well as TLR agonist-induced costimulatory molecule expression and TNF-α (but not IL-6 or IL-10) production. Whereas treatment with a TLR9 agonist protected IgH V region unmutated, but not mutated, CLL cells from apoptosis, PDE4 inhibitors augmented apoptosis in both subtypes, suggesting that cAMP-mediated signaling may abrogate a TLR9-mediated survival signal in prognostically unfavorable IGHV unmutated CLL cells. Rolipram inhibited both TLR7/8- and TLR9-induced IFN regulatory factor 5 and NF-κB p65 nuclear translocation. PDE4 inhibitors also blocked TLR signaling in normal human immune cells. In PBMC and CD14-positive monocytes, PDE4 inhibitors blocked IFN-α or TNF-α (but not IL-6) production, respectively, following stimulation with synthetic TLR agonists or RNA-containing immune complexes. These results suggest that PDE4 inhibitors may be of clinical utility in CLL or autoimmune diseases that are driven by TLR-mediated signaling.


Methods of Molecular Biology | 2014

Evaluating the role of nucleic acid antigens in murine models of systemic lupus erythematosus.

Amanda A. Watkins; Ramon G. Bonegio; Ian R. Rifkin

Impaired apoptotic cell clearance is thought to contribute to the pathogenesis of systemic autoimmune disease, in particular systemic lupus erythematosus (SLE). Endogenous RNA- and DNA-containing autoantigens released from dying cells can engage Toll-like receptors (TLR) 7/8 and TLR9, respectively in a number of immune cell types, thereby promoting innate and adaptive immune responses. Mouse models of lupus reliably phenocopy many of the characteristic features of SLE in humans and these models have proved invaluable in defining disease mechanisms. TLR7 signaling is essential for the development of autoantibodies to RNA and RNA-associated proteins like Sm and RNP, while TLR9 signaling is important for the development of antibodies to DNA and chromatin. TLR7 deficiency ameliorates end-organ disease, but, surprisingly, TLR9 deficiency exacerbates disease, possibly as a result of TLR7 overactivity in TLR9-deficient mice. Deficiency of interferon regulatory factor 5 (IRF5) inhibits autoantibody production and ameliorates disease likely due to its role in both TLR7 and TLR9 signaling. In this report we describe methods to analyze two commonly used mouse models of SLE in which TLRs and/or IRF5 have been shown to play a role in disease pathogenesis.


Arthritis & Rheumatism | 2015

Interferon Regulatory Factor 5 Promotes Inflammatory Arthritis

Pierre Duffau; Hanni Menn-Josephy; Carla M. Cuda; Salina Dominguez; Tamar Aprahamian; Amanda A. Watkins; Kei Yasuda; Paul A. Monach; Robert Lafyatis; Lisa M. Rice; G. Kenneth Haines; Ellen M. Gravallese; Rebecca Baum; Christophe Richez; Harris Perlman; Ramon G. Bonegio; Ian R. Rifkin

Polymorphisms in the transcription factor interferon regulatory factor 5 (IRF5) are associated with an increased risk of developing rheumatoid arthritis (RA). This study was undertaken to determine the role of IRF5 in a mouse model of arthritis development.


Arthritis & Rheumatism | 2015

Promotion of Inflammatory Arthritis by Interferon Regulatory Factor 5 in a Mouse Model: IRF5 PROMOTES INFLAMMATORY ARTHRITIS

Pierre Duffau; Hanni Menn-Josephy; Carla M. Cuda; Salina Dominguez; Tamar Aprahamian; Amanda A. Watkins; Kei Yasuda; Paul A. Monach; Robert Lafyatis; Lisa M. Rice; G. Kenneth Haines; Ellen M. Gravallese; Rebecca Baum; Christophe Richez; Harris Perlman; Ramon G. Bonegio; Ian R. Rifkin

Polymorphisms in the transcription factor interferon regulatory factor 5 (IRF5) are associated with an increased risk of developing rheumatoid arthritis (RA). This study was undertaken to determine the role of IRF5 in a mouse model of arthritis development.

Collaboration


Dive into the Amanda A. Watkins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Duffau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen M. Gravallese

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge