Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda Boyd is active.

Publication


Featured researches published by Amanda Boyd.


Nature Neuroscience | 2013

M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination

Veronique E. Miron; Amanda Boyd; Jing-Wei Zhao; Tracy J Yuen; Julia M. Ruckh; Jennifer L. Shadrach; Peter van Wijngaarden; Amy J. Wagers; Anna Williams; Robin J.M. Franklin; Charles ffrench-Constant

The lack of therapies for progressive multiple sclerosis highlights the need to understand the regenerative process of remyelination that can follow CNS demyelination. This involves an innate immune response consisting of microglia and macrophages, which can be polarized to distinct functional phenotypes: pro-inflammatory (M1) and anti-inflammatory or immunoregulatory (M2). We found that a switch from an M1- to an M2-dominant response occurred in microglia and peripherally derived macrophages as remyelination started. Oligodendrocyte differentiation was enhanced in vitro with M2 cell conditioned media and impaired in vivo following intra-lesional M2 cell depletion. M2 cell densities were increased in lesions of aged mice in which remyelination was enhanced by parabiotic coupling to a younger mouse and in multiple sclerosis lesions that normally show remyelination. Blocking M2 cell–derived activin-A inhibited oligodendrocyte differentiation during remyelination in cerebellar slice cultures. Thus, our results indicate that M2 cell polarization is essential for efficient remyelination and identify activin-A as a therapeutic target for CNS regeneration.


Journal of Virology | 2002

A Single Amino Acid Change in the Nuclear Localization Sequence of the nsP2 Protein Affects the Neurovirulence of Semliki Forest Virus

John K. Fazakerley; Amanda Boyd; Marja L. Mikkola; Leevi Kääriäinen

ABSTRACT The replicase protein nsP2 of Semliki Forest virus (SFV) has a 648RRR nuclear localization signal and is transported to the nucleus. SFV-RDR has a single amino acid change which disrupts this sequence and nsP2 nuclear transport. In BHK cells, SFV4 and SFV-RDR replicate to high titers, but SFV-RDR is less virulent in mice. We compared the replication of SFV4 and SFV-RDR in adult mouse brain. Both SFV4 and SFV-RDR were neuroinvasive following intraperitoneal inoculation. SFV4 spread rapidly throughout the brain, whereas SFV-RDR infection was confined to small foci of cells. Both viruses infected neurons and oligodendrocytes. Both viruses induced apoptosis in cultured BHK cells but not in the cells of the adult mouse brain. SFV-RDR infection of mice lacking alpha/beta interferon receptors resulted in widespread virus distribution in the brain. Thus, a component of the viral replicase plays an important role in the neuropathogenesis of SFV.


Acta Neuropathologica | 2013

Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models.

Amanda Boyd; Hongyan Zhang; Anna Williams

Failure of remyelination of multiple sclerosis (MS) lesions contributes to neurodegeneration that correlates with chronic disability in patients. Currently, there are no available treatments to reduce neurodegeneration, but one therapeutic approach to fill this unmet need is to promote remyelination. As many demyelinated MS lesions contain plentiful oligodendrocyte precursor cells (OPCs), but no mature myelinating oligodendrocytes, research has previously concentrated on promoting OPC maturation. However, some MS lesions contain few OPCs, and therefore, remyelination failure may also be secondary to OPC recruitment failure. Here, in a series of MS samples, we determined how many lesions contained few OPCs, and correlated this to pathological subtype and expression of the chemotactic molecules Semaphorin (Sema) 3A and 3F. 37xa0% of MS lesions contained low numbers of OPCs, and these were mostly chronic active lesions, in which cells expressed Sema3A (chemorepellent). To test the hypothesis that differential Sema3 expression in demyelinated lesions alters OPC recruitment and the efficiency of subsequent remyelination, we used a focal myelinotoxic mouse model of demyelination. Adding recombinant (r)Sema3A (chemorepellent) to demyelinated lesions reduced OPC recruitment and remyelination, whereas the addition of rSema3F (chemoattractant), or use of transgenic mice with reduced Sema3A expression increased OPC recruitment and remyelination. We conclude that some MS lesions fail to remyelinate secondary to reduced OPC recruitment, and that chemotactic molecules are involved in the mechanism, providing a new group of drug targets to improve remyelination, with a specific target in the Sema3A receptor neuropilin-1.


Experimental Neurology | 2011

Central nervous system remyelination in culture — A tool for multiple sclerosis research

Hui Zhang; Andrew A. Jarjour; Amanda Boyd; Anna Williams

Multiple sclerosis is a demyelinating disease of the central nervous system which only affects humans. This makes it difficult to study at a molecular level, and to develop and test potential therapies that may change the course of the disease. The development of therapies to promote remyelination in multiple sclerosis is a key research aim, to both aid restoration of electrical impulse conduction in nerves and provide neuroprotection, reducing disability in patients. Testing a remyelination therapy in the many and various in vivo models of multiple sclerosis is expensive in terms of time, animals and money. We report the development and characterisation of an ex vivo slice culture system using mouse brain and spinal cord, allowing investigation of myelination, demyelination and remyelination, which can be used as an initial reliable screen to select the most promising remyelination strategies. We have automated the quantification of myelin to provide a high content and moderately-high-throughput screen for testing therapies for remyelination both by endogenous and exogenous means and as an invaluable way of studying the biology of remyelination.


Journal of Virology | 2003

Activation of PKR by Bunyamwera Virus Is Independent of the Viral Interferon Antagonist NSs

Hein Streitenfeld; Amanda Boyd; John K. Fazakerley; Anne Bridgen; Richard M. Elliott; Friedemann Weber

ABSTRACT Double-stranded RNA (dsRNA) is a by-product of viral RNA polymerase activity, and its recognition is one mechanism by which the innate immune system is activated. Cellular responses to dsRNA include induction of alpha/beta interferon (IFN) synthesis and activation of the enzyme PKR, which exerts its antiviral effect by phosphorylating the eukaryotic initiation factor eIF-2 alpha, thereby inhibiting translation. We have recently identified the nonstructural protein NSs of Bunyamwera virus (BUNV), the prototype of the family Bunyaviridae, as a virulence factor that blocks the induction of IFN by dsRNA. Here, we investigated the potential of NSs to inhibit PKR. We show that wild-type (wt) BUNV that expresses NSs triggered PKR-dependent phosphorylation of eIF-2 alpha to levels similar to those of a recombinant virus that does not express NSs (BUNdelNSs virus). Furthermore, the sensitivity of viruses in cell culture to IFN was independent of PKR and was not determined by NSs. PKR knockout mice, however, succumbed to infection approximately 1 day earlier than wt mice or mice deficient in expression of RNase L, another dsRNA-activated antiviral enzyme. Our data indicate that (i) bunyaviruses activate PKR, but are only marginally sensitive to its antiviral effect, and (ii) NSs is different from other IFN antagonists, since it inhibits dsRNA-dependent IFN induction but has no effect on the dsRNA-activated PKR and RNase L systems.


Journal of Virology | 2005

Attenuation of Bunyavirus Replication by Rearrangement of Viral Coding and Noncoding Sequences

Anice C. Lowen; Amanda Boyd; John K. Fazakerley; Richard M. Elliott

ABSTRACT Bunyamwera virus (BUN) is the prototype virus of the family Bunyaviridae. BUN has a tripartite negative-sense RNA genome comprising small (S), medium (M), and large (L) segments. Partially complementary untranslated regions (UTRs) flank the coding region of each segment. The terminal 11 nucleotides of these UTRs are conserved between the three segments, while the internal regions are unique. The UTRs direct replication and transcription of viral RNA and are sufficient to allow encapsidation of viral RNA into ribonucleoprotein complexes. To investigate the segment-specific functions of the UTRs, we have used reverse genetics to recover a recombinant virus (called BUN MLM) in which the L segment open reading frame (ORF) is flanked by the M segment UTRs. Compared to wild-type virus, BUN MLM virus shows growth attenuation in cultured mammalian cells and a slower disease progression in mice, produces small plaques, expresses reduced levels of L mRNA and L (RNA polymerase) protein, synthesizes less L genomic and antigenomic RNA, and has an increased particle-to-PFU ratio. Our data suggest that the packaging of BUN RNAs is not segment specific. In addition, the phenotype of BUN MLM virus supports the finding that BUN UTRs differ in their regulation of RNA synthesis but suggests that the interplay between each segment UTR and its cognate ORF may contribute to that regulation. Since BUN MLM virus is attenuated due to an essentially irreversible mutation, the rearrangement of UTRs is a feasible strategy for vaccine design for the more pathogenic members of the Bunyaviridae.


Nature Neuroscience | 2017

Regulatory T cells promote myelin regeneration in the central nervous system

Yvonne Dombrowski; Thomas O'Hagan; Marie Dittmer; Rosana Penalva; Sonia R. Mayoral; Peter Bankhead; Samara Fleville; Georgios Eleftheriadis; Chao Zhao; Michelle Naughton; Rachel Hassan; Jill Moffat; John Falconer; Amanda Boyd; Peter Hamilton; Ingrid V. Allen; Adrien Kissenpfennig; Paul N. Moynagh; Emma Evergren; Bernard Perbal; Anna Williams; Rebecca J. Ingram; Jonah R. Chan; Robin J.M. Franklin; Denise C. Fitzgerald

Regeneration of CNS myelin involves differentiation of oligodendrocytes from oligodendrocyte progenitor cells. In multiple sclerosis, remyelination can fail despite abundant oligodendrocyte progenitor cells, suggesting impairment of oligodendrocyte differentiation. T cells infiltrate the CNS in multiple sclerosis, yet little is known about T cell functions in remyelination. We report that regulatory T cells (Treg) promote oligodendrocyte differentiation and (re)myelination. Treg-deficient mice exhibited substantially impaired remyelination and oligodendrocyte differentiation, which was rescued by adoptive transfer of Treg. In brain slice cultures, Treg accelerated developmental myelination and remyelination, even in the absence of overt inflammation. Treg directly promoted oligodendrocyte progenitor cell differentiation and myelination in vitro. We identified CCN3 as a Treg-derived mediator of oligodendrocyte differentiation and myelination in vitro. These findings reveal a new regenerative function of Treg in the CNS, distinct from immunomodulation. Although the cells were originally named Treg to reflect immunoregulatory roles, this also captures emerging, regenerative Treg functions.


Biomaterials | 2015

Myelin repair in vivo is increased by targeting oligodendrocyte precursor cells with nanoparticles encapsulating leukaemia inhibitory factor (LIF)

Sonja Rittchen; Amanda Boyd; Alasdair Burns; Jason Park; Tarek M. Fahmy; Su M. Metcalfe; Anna Williams

Multiple sclerosis (MS) is a progressive demyelinating disease of the central nervous system (CNS). Many nerve axons are insulated by a myelin sheath and their demyelination not only prevents saltatory electrical signal conduction along the axons but also removes their metabolic support leading to irreversible neurodegeneration, which currently is untreatable. There is much interest in potential therapeutics that promote remyelination and here we explore use of leukaemia inhibitory factor (LIF), a cytokine known to play a key regulatory role in self-tolerant immunity and recently identified as a pro-myelination factor. In this study, we tested a nanoparticle-based strategy for targeted delivery of LIF to oligodendrocyte precursor cells (OPC) to promote their differentiation into mature oligodendrocytes able to repair myelin. Poly(lactic-co-glycolic acid)-based nanoparticles of ∼120 nm diameter were constructed with LIF as cargo (LIF-NP) with surface antibodies against NG-2 chondroitin sulfate proteoglycan, expressed on OPC. In vitro, NG2-targeted LIF-NP bound to OPCs, activated pSTAT-3 signalling and induced OPC differentiation into mature oligodendrocytes. In vivo, using a model of focal CNS demyelination, we show that NG2-targeted LIF-NP increased myelin repair, both at the level of increased number of myelinated axons, and increased thickness of myelin per axon. Potency was high: a single NP dose delivering picomolar quantities of LIF is sufficient to increase remyelination. Impact statement Nanotherapy-based delivery of leukaemia inhibitory factor (LIF) directly to OPCs proved to be highly potent in promoting myelin repair in vivo: this delivery strategy introduces a novel approach to delivering drugs or biologics targeted to myelin repair in diseases such as MS.


Journal of General Virology | 2008

In Semliki Forest virus encephalitis, antibody rapidly clears infectious virus and is required to eliminate viral material from the brain, but is not required to generate lesions of demyelination

Rennos Fragkoudis; Catherine M. Ballany; Amanda Boyd; John K. Fazakerley

Semliki Forest virus (SFV) infection of the laboratory mouse provides a well-characterized tractable system to study the pathogenesis of virus encephalitis and virus induced demyelination. In microMT mice, which have no antibodies, infectious virus persisted in both the serum and the brain for several weeks, indicating that antibodies are required to eliminate infectious virus. In immunocompetent mice, virus infectivity in the brain was undetectable after the first week of infection, but virus RNA levels declined slowly. Following SFV infection, lesions of demyelination were present in the brains of both immunocompetent and microMT mice, indicating that antibodies are not required to generate lesions of demyelination.


PLOS Biology | 2015

The Polarity Protein Scribble Regulates Myelination and Remyelination in the Central Nervous System

Andrew A. Jarjour; Amanda Boyd; Lukas E. Dow; Rebecca K. Holloway; Sandra Goebbels; Patrick O. Humbert; Anna Williams; Charles ffrench-Constant

The development and regeneration of myelin by oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), requires profound changes in cell shape that lead to myelin sheath initiation and formation. Here, we demonstrate a requirement for the basal polarity complex protein Scribble in CNS myelination and remyelination. Scribble is expressed throughout oligodendroglial development and is up-regulated in mature oligodendrocytes where it is localised to both developing and mature CNS myelin sheaths. Knockdown of Scribble expression in cultured oligodendroglia results in disrupted morphology and myelination initiation. When Scribble expression is conditionally eliminated in the myelinating glia of transgenic mice, myelin initiation in CNS is disrupted, both during development and following focal demyelination, and longitudinal extension of the myelin sheath is disrupted. At later stages of myelination, Scribble acts to negatively regulate myelin thickness whilst suppressing the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAP) kinase pathway, and localises to non-compact myelin flanking the node of Ranvier where it is required for paranodal axo-glial adhesion. These findings demonstrate an essential role for the evolutionarily-conserved regulators of intracellular polarity in myelination and remyelination.

Collaboration


Dive into the Amanda Boyd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John K. Fazakerley

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew A. Jarjour

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge