Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda D. Harwood is active.

Publication


Featured researches published by Amanda D. Harwood.


Environmental Toxicology and Chemistry | 2010

Distribution and toxicity of sediment-associated pesticides in urban and agricultural waterways from Illinois, USA.

Yuping Ding; Amanda D. Harwood; Heather M. Foslund; Michael J. Lydy

A statewide investigation of insecticide presence and sediment toxicity was conducted in Illinois, USA, from June to August 2008. Twenty sediment samples were collected from urban areas throughout Illinois, and 49 sediment samples were collected from 14 agriculture-dominated counties in central and southern Illinois. Ten-day sediment toxicity tests were conducted using the amphipod Hyalella azteca, and 59% of the urban sites and 2% of the agricultural locations sampled caused significant mortality in the amphipods. The field sediments were analyzed for 29 pesticides, including 19 organochlorines, one organophosphate, and nine pyrethroids. The detection frequencies of organochlorines, chlorpyrifos, and pyrethroids were 95, 65, and 95%, respectively, for urban sites, and 45, 6.1, and 47%, respectively, for agricultural sites. Based on toxic unit analysis, bifenthrin was the main contributor to the detected mortality in urban sediments. The present study provides the first broad assessment of pesticide prevalence in both urban and agriculture areas in Illinois.


Environmental Toxicology and Chemistry | 2009

Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: Toxicokinetic confirmation

Amanda D. Harwood; Jing You; Michael J. Lydy

Toxicity identification evaluation (TIE) methods can be used to identify toxic compounds in environmental samples using a variety of laboratory techniques. Whereas TIEs exist for nonpolar organics, relatively few methods are established for individual contaminant classes. Toxicity identification evaluations have shown pesticides to be the cause of toxicity in agricultural waters and effluents, and more recent studies have shown that the insecticide class of concern is pyrethroids. The primary objectives of the present study were to confirm a temperature TIE model and mechanistically explain these trends. This was achieved by comparing the relative toxicity and influence of temperature (13 vs. 23 degrees C) on Chironomus dilutus exposed to four insecticides, including two pyrethroids, an organophosphate, and an organochlorine, and then explaining these changes using toxicokinetics. A 10 degrees C temperature decrease increased the toxicity of pyrethroids and DDT but decreased the toxicity of chlorpyrifos. The decrease in chlorpyrifos toxicity was driven primarily by the reduction of the formation of more toxic products via decreased biotransformation. The increase in DDT toxicity, in contrast, can be attributed to increased nerve sensitivity at 13 versus 23 degrees C. The pyrethroid toxicity change, however, resulted from a combination of increased accumulation of parent compound and increased nerve sensitivity, exacerbating the toxicity of pyrethroids at 13 degrees C. These trends also held true in sediment exposures with chlorpyrifos and permethrin, indicating that water-only exposures were adequate substitutes for examining this mechanism.


Environmental Toxicology and Chemistry | 2008

EFFECT OF SEDIMENT-ASSOCIATED PYRETHROIDS, FIPRONIL, AND METABOLITES ON CHIRONOMUS TENTANS GROWTH RATE, BODY MASS, CONDITION INDEX, IMMOBILIZATION, AND SURVIVAL

Jonathan D. Maul; Amanda A. Brennan; Amanda D. Harwood; Michael J. Lydy

Pyrethroids and fipronil insecticides partition to sediment and organic matter in aquatic systems and may pose a risk to organisms that use these matrices. It has been suggested that bioavailability of sediment-sorbed pesticides is reduced, but data on toxicity of sediment-associated pesticides for pyrethroids and fipronil are limited. In the current study, 10-d sediment exposures were conducted with larval Chironomus tentans for bifenthrin, lambda-cyhalothrin, permethrin, fipronil, fipronil-sulfide, and fipronil-sulfone, the last two being common fipronil metabolites. Sublethal endpoints included immobilization, instantaneous growth rate (IGR), body condition index, and growth estimated by ash-free dry mass (AFDM). Pyrethroid lethal concentrations to 50% of the population (LC50s) were 6.2, 2.8, and 24.5 microg/g of organic carbon (OC) for bifenthrin, lambda-cyhalothrin, and permethrin, respectively; with the former two lower than previously published estimates. Fipronil, fipronil-sulfide, and fipronil-sulfone LC50 values were 0.13, 0.16, and 0.12 microg/g of OC, respectively. Ratios of LC50s to sublethal endpoints (immobilization, IGR, and AFDM) ranged from 0.90 to 9.03. The effects on growth observed in the present study are important because of the unique dipteran life cycle involving pupation and emergence events. Growth inhibition would likely lead to ecological impacts similar to mortality (no emergence and thus not reproductively viable) but at concentrations up to 4.3 times lower than the LC50 for some compounds. In addition, C. tentans was highly sensitive to fipronil and metabolites, suggesting that dipterans may be important for estimating risk and understanding effects of phenylpyrazole-class insecticides on benthic macroinvertebrate communities.


Environmental Toxicology and Chemistry | 2009

Whole sediment toxicity identification evaluation tools for pyrethroid insecticides: III. Temperature manipulation

Donald P. Weston; Jing You; Amanda D. Harwood; Michael J. Lydy

Since the toxicity of pyrethroid insecticides is known to increase at low temperatures, the use of temperature manipulation was explored as a whole-sediment toxicity identification evaluation (TIE) tool to help identify sediment samples in which pyrethroid insecticides are responsible for observed toxicity. The amphipod Hyalella azteca is commonly used for toxicity testing of sediments at a 23 degrees C test temperature. However, a temperature reduction to 18 degrees C doubled the toxicity of pyrethroids, and a further reduction to 13 degrees C tripled their toxicity. A similar response, though less dramatic, was found for 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), and dissimilar temperature responses were seen for cadmium and the insecticide chlorpyrifos. Tests with field-collected sediments containing pyrethroids and/or chlorpyrifos showed the expected thermal dependency in nearly all instances. The inverse relationship between temperature and toxicity provides a simple approach to help establish when pyrethroids are the principal toxicant in a sediment sample that could be used as a supplemental tool in concert with chemical analysis or other TIE manipulations. The phenomenon appears to be, in part, a consequence of a reduced ability to biotransform the toxic parent compound at cooler temperatures. The strong dependence of pyrethroid toxicity on temperature has important ramifications for predicting their environmental effects, and the standard test temperature of 23 degrees C dramatically underestimates risk to resident fauna during the cooler months.


Integrated Environmental Assessment and Management | 2014

Passive sampling methods for contaminated sediments: State of the science for organic contaminants

Michael J. Lydy; Peter F. Landrum; Amy Mp Oen; Mayumi Allinson; Foppe Smedes; Amanda D. Harwood; Huizhen Li; Keith A. Maruya; Jingfu Liu

This manuscript surveys the literature on passive sampler methods (PSMs) used in contaminated sediments to assess the chemical activity of organic contaminants. The chemical activity in turn dictates the reactivity and bioavailability of contaminants in sediment. Approaches to measure specific binding of compounds to sediment components, for example, amorphous carbon or specific types of reduced carbon, and the associated partition coefficients are difficult to determine, particularly for native sediment. Thus, the development of PSMs that represent the chemical activity of complex compound–sediment interactions, expressed as the freely dissolved contaminant concentration in porewater (Cfree), offer a better proxy for endpoints of concern, such as reactivity, bioaccumulation, and toxicity. Passive sampling methods have estimated Cfree using both kinetic and equilibrium operating modes and used various polymers as the sorbing phase, for example, polydimethylsiloxane, polyethylene, and polyoxymethylene in various configurations, such as sheets, coated fibers, or vials containing thin films. These PSMs have been applied in laboratory exposures and field deployments covering a variety of spatial and temporal scales. A wide range of calibration conditions exist in the literature to estimate Cfree, but consensus values have not been established. The most critical criteria are the partition coefficient between water and the polymer phase and the equilibrium status of the sampler. In addition, the PSM must not appreciably deplete Cfree in the porewater. Some of the future challenges include establishing a standard approach for PSM measurements, correcting for nonequilibrium conditions, establishing guidance for selection and implementation of PSMs, and translating and applying data collected by PSMs. Integr Environ Assess Manag 2014;10:167–178.


Environmental Science & Technology | 2012

Can SPME fiber and Tenax methods predict the bioavailability of biotransformed insecticides

Amanda D. Harwood; Peter F. Landrum; Michael J. Lydy

Recent studies recognize the ability of chemical techniques such as solid phase microextraction (SPME) fibers and Tenax extraction to predict bioavailability more effectively than exhaustive chemical extractions for sediment-associated organic contaminants. While the majority of research using these techniques studied legacy compounds such as PCBs and PAHs, there is great potential for these methods to work well for highly toxic, rapidly biotransformed compounds such as pyrethroid insecticides. The current study compared the ability of the two techniques to predict the bioavailability of permethrin and bifenthrin to two benthic invertebrates (Lumbriculus variegatus and Hexagenia sp.). In addition, variations in the application of the two techniques, specifically duration and conditions of exposure of the SPME fibers and duration of extraction with Tenax, were explored. The SPME fiber concentrations correlated strongly to both 6 and 24 h Tenax concentrations. The SPME fiber concentrations and 6 h and 24 h Tenax extractable concentrations correlated with both the parent permethrin and bifenthrin concentrations in the tissues of both species at steady state. Parent compound tissue concentrations for both species could be predicted with a single relationship for individual pyrethroids. This demonstrated the potential value of these methods to predict the bioavailability of compounds subject to biotransformation and application to multiple species.


Environmental Pollution | 2013

Using SPME fibers and Tenax to predict the bioavailability of pyrethroids and chlorpyrifos in field sediments.

Amanda D. Harwood; Peter F. Landrum; Donald P. Weston; Michael J. Lydy

The presence of pyrethroids in both urban and agricultural sediments at levels lethal to invertebrates has been well documented. However, variations in bioavailability among sediments make accurate predictions of toxicity based on whole sediment concentrations difficult. A proposed solution to this problem is the use of bioavailability-based estimates, such as solid phase microextraction (SPME) fibers and Tenax beads. This study compared three methods to assess the bioavailability and ultimately toxicity of pyrethroid pesticides including field-deployed SPME fibers, laboratory-exposed SPME fibers, and a 24-h Tenax extraction. The objective of the current study was to compare the ability of these methods to quantify the bioavailable fraction of pyrethroids in contaminated field sediments that were toxic to benthic invertebrates. In general, Tenax proved a more sensitive method than SPME fibers and a correlation between Tenax extractable concentrations and mortality was observed.


Chemosphere | 2009

Degradation of fipronil in anaerobic sediments and the effect on porewater concentrations.

Amanda A. Brennan; Amanda D. Harwood; Jing You; Peter F. Landrum; Michael J. Lydy

The current study measured the degradation of fipronil in laboratory-spiked silt loam sediment under anaerobic conditions at different aging times. The half-life of fipronil in anaerobic sediments spiked at 5.8+/-0.049 and 21+/-1.4microg/kg dry weight (dw) was 21+/-0.22 and 15+/-0.11d, respectively. Fipronil-sulfide was the primary degradation product with fipronil-sulfone detected at lower concentrations. No degradation occurred to fipronil-sulfide and fipronil-sulfone over 200d in separate systems. A concurrent decline in sediment concentrations resulted in a decline of fipronil in sediment porewater with an increase in fipronil-sulfide and fipronil-sulfone measured by matrix-solid phase microextraction (matrix-SPME). Equilibrium among sediment, porewater, and matrix-SPME fiber occurred within 138d for fipronil and fipronil-sulfone; however, fipronil-sulfide did not reach equilibrium during the test, and modeling predicted upwards of 1083d to reach equilibrium. Regardless of the time to reach equilibrium, the rapid degradation of fipronil has little ecological significance given that fipronil-sulfide and fipronil-sulfone have equal or greater toxicity, and exhibit greater environmental stability in both the sediment and porewater, thereby becoming bioavailable.


Chemosphere | 2013

Bioavailability-based toxicity endpoints of bifenthrin for Hyalella azteca and Chironomus dilutus

Amanda D. Harwood; Peter F. Landrum; Michael J. Lydy

Recent studies have determined that techniques, such as solid phase microextraction (SPME) fibers and Tenax beads, can predict bioaccumulation and potentially could predict toxicity for several compounds and species. Toxicity of bifenthrin was determined using two standard sediment toxicity tests with the benthic species Hyalella azteca and Chironomus dilutus in three reference sediments with different characteristics. The objectives of the current study were to establish bioavailability-based median lethal concentrations (LC50) and median effect concentrations (EC50) of the pyrethroid insecticide bifenthrin, compare their ability to assess toxicity to the use of whole sediment concentrations, as well as to make comparisons of the concentrations derived using each method in order to make assessments of accuracy and extrapolation potential. Four metrics were compared including SPME fiber concentration, pore water concentration derived using SPMEs, 6 h Tenax extractable concentration, and 24 h Tenax extractable concentration. The variation among the LC50s and EC50s in each sediment derived using bioavailability-based methods was comparable to variation among organic carbon normalized sediment concentrations, but improved over whole sediment concentrations. There was a significant linear relationship between SPME or Tenax and organic carbon normalized sediment concentrations. Additionally, there was a significant relationship between the SPME and Tenax concentrations across sediments. The significant linear relationship between SPME and Tenax concentrations further demonstrates that these bioavailability-based endpoints are interrelated. This study derived bioavailability-based benchmarks that may prove to be more accurate than sediment-based ones in predicting toxicity across sediment types.


Integrated Environmental Assessment and Management | 2015

Tenax extraction of sediments to estimate desorption and bioavailability of hydrophobic contaminants: A literature review

Michael J. Lydy; Amanda D. Harwood; Samuel A. Nutile; Peter F. Landrum

Characterizing sediment-associated hydrophobic contaminants is problematic, because assessing the total amount of a compound available for chemical exchange with an organism is difficult. To address this, contaminant concentrations have been normalized for specific sediment characteristics (including organic C content) or the chemical activity has been estimated using passive samplers. Another approach to assess compound availability is to determine the extent of readily desorbed compound using resin extractions of sediment slurries. The present paper reviews the literature that uses Tenax® TA, a 2,6-diphenylene-oxide polymer as an extraction tool to measure bioavailability of hydrophobic organic contaminants in sediment. Some work has assessed the extent of desorption with sequential extractions to characterize the maximum rate and pool sizes for different desorbing fractions of bound contaminant. As such, the rapidly desorbing fraction has been well correlated with the extent of degradation, bioaccumulation, and toxicity of hydrophobic contaminants. A shortcut to measuring the full desorption curve to determine the rapidly desorbing compound is to use a single-point extraction, with 6  h or 24  h extractions being the most common. The Tenax extraction has been shown to be effective with laboratory-spiked sediments, field-collected sediments, laboratory-exposed organisms, field-collected organisms, and studies among laboratories. Furthermore, a literature-based model has described the bioaccumulation of polychlorinated biphenyls from independently measured field-collected sediments. Despite the success of this approach, applying the Tenax method to manage contaminated sediments is limited by the absence of a standard set of conditions to perform the extractions, as well as standard methods for using field sediments.

Collaboration


Dive into the Amanda D. Harwood's collaboration.

Top Co-Authors

Avatar

Michael J. Lydy

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Peter F. Landrum

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Jing You

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuping Ding

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Amanda A. Brennan

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Amanda K. Rothert

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel A. Nutile

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Huizhen Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Aubrey R. Bunch

Southern Illinois University Carbondale

View shared research outputs
Researchain Logo
Decentralizing Knowledge