Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda J. Russell is active.

Publication


Featured researches published by Amanda J. Russell.


Oncogene | 1998

Identification of a human HECT family protein with homology to the Drosophila tumor suppressor gene hyperplastic discs.

Michelle J. Callaghan; Amanda J. Russell; Erica Woollatt; Grant R. Sutherland; Robert L. Sutherland; Colin K. W. Watts

Use of the differential display technique to isolate progestin-regulated genes in T-47D human breast cancer cells led to identification of a novel gene, EDD. The cDNA sequence contains a 2799 amino acid open reading frame sharing 40% identity with the predicted 2894 amino acid product of the Drosophila melanogaster tumor suppressor gene hyperplastic discs, while the carboxy-terminal 889 amino acids show 96% identity to a rat 100 kDa HECT domain protein. EDD mRNA was progestin-induced in T-47D cells and was highly abundant in testes and expressed at moderately high levels in other tissues, suggesting a broad role for EDD. Anti-EDD antibodies immunoprecipitated an approximately 300 kDa protein from T-47D cell lysates. HECT family proteins function as E3 ubiquitin-protein ligases, targeting specific proteins for ubiquitin-mediated proteolysis. EDD is likely to function as an E3 as in vitro translated protein bound ubiquitin reversibly through a conserved HECT domain cysteine residue. EDD was localized by FISH to chromosome 8q22, a locus disrupted in a variety of cancers. Given the homology between EDD and the hyperplastic discs protein, which is required for control of imaginal disc growth in Drosophila, EDD potentially has a role in regulation of cell proliferation or differentiation.


Journal of the National Cancer Institute | 2011

ABCC Multidrug Transporters in Childhood Neuroblastoma: Clinical and Biological Effects Independent of Cytotoxic Drug Efflux

Michelle J. Henderson; Michelle Haber; Antonio Porro; Marcia A. Munoz; Nunzio Iraci; Chengyuan Xue; Jayne Murray; Claudia Flemming; Janice Smith; Jamie I. Fletcher; Samuele Gherardi; Chin Kiat Kwek; Amanda J. Russell; Emanuele Valli; Wendy B. London; Allen Buxton; Lesley J. Ashton; Alan C. Sartorelli; Susan L. Cohn; Manfred Schwab; Glenn M. Marshall; Giovanni Perini; Murray D. Norris

Background Although the prognostic value of the ATP-binding cassette, subfamily C (ABCC) transporters in childhood neuroblastoma is usually attributed to their role in cytotoxic drug efflux, certain observations have suggested that these multidrug transporters might contribute to the malignant phenotype independent of cytotoxic drug efflux. Methods A v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (MYCN)–driven transgenic mouse neuroblastoma model was crossed with an Abcc1-deficient mouse strain (658 hMYCN1/−, 205 hMYCN+/1 mice) or, alternatively, treated with the ABCC1 inhibitor, Reversan (n = 20). ABCC genes were suppressed using short interfering RNA or overexpressed by stable transfection in neuroblastoma cell lines BE(2)-C, SH-EP, and SH-SY5Y, which were then assessed for wound closure ability, clonogenic capacity, morphological differentiation, and cell growth. Real-time quantitative polymerase chain reaction was used to examine the clinical significance of ABCC family gene expression in a large prospectively accrued cohort of patients (n = 209) with primary neuroblastomas. Kaplan–Meier survival analysis and Cox regression were used to test for associations with event-free and overall survival. Except where noted, all statistical tests were two-sided. Results Inhibition of ABCC1 statistically significantly inhibited neuroblastoma development in hMYCN transgenic mice (mean age for palpable tumor: treated mice, 47.2 days; control mice, 41.9 days; hazard ratio [HR] = 9.3, 95% confidence interval [CI] = 2.65 to 32; P < .001). Suppression of ABCC1 in vitro inhibited wound closure (P < .001) and clonogenicity (P = .006); suppression of ABCC4 enhanced morphological differentiation (P < .001) and inhibited cell growth (P < .001). Analysis of 209 neuroblastoma patient tumors revealed that, in contrast with ABCC1 and ABCC4, low rather than high ABCC3 expression was associated with reduced event-free survival (HR of recurrence or death = 2.4, 95% CI = 1.4 to 4.2; P = .001), with 23 of 53 patients with low ABCC3 expression experiencing recurrence or death compared with 31 of 155 patients with high ABCC3. Moreover, overexpression of ABCC3 in vitro inhibited neuroblastoma cell migration (P < .001) and clonogenicity (P = .03). The combined expression of ABCC1, ABCC3, and ABCC4 was associated with patients having an adverse event, such that of the 12 patients with the “poor prognosis” expression pattern, 10 experienced recurrence or death (HR of recurrence or death = 12.3, 95% CI = 6 to 27; P < .001). Conclusion ABCC transporters can affect neuroblastoma biology independently of their role in chemotherapeutic drug efflux, enhancing their potential as targets for therapeutic intervention.


Oncogene | 2003

EDD, the human orthologue of the hyperplastic discs tumour suppressor gene, is amplified and overexpressed in cancer.

Jennifer L. Clancy; Michelle J. Henderson; Amanda J. Russell; David W. Anderson; Ronaldo J. Bova; Ian G. Campbell; David Y. H. Choong; Graeme A. Macdonald; Graham J. Mann; Tania Nolan; Ged Brady; Olufunmilayo I. Olopade; Erica Woollatt; Michael J. Davies; Davendra Segara; Neville F. Hacker; Susan M. Henshall; Robert L. Sutherland; Colin K. W. Watts

EDD (E3 isolated by differential display), located at chromosome 8q22.3, is the human orthologue of the Drosophila melanogaster tumour suppressor gene ‘hyperplastic discs’ and encodes a HECT domain E3 ubiquitin protein-ligase. To investigate the possible involvement of EDD in human cancer, several cancers from diverse tissue sites were analysed for allelic gain or loss (allelic imbalance, AI) at the EDD locus using an EDD-specific microsatellite, CEDD, and other polymorphic microsatellites mapped in the vicinity of the 8q22.3 locus. Of 143 cancers studied, 38 had AI at CEDD (42% of 90 informative cases). In 14 of these cases, discrete regions of imbalance encompassing 8q22.3 were present, while the remainder had more extensive 8q aberrations. AI of CEDD was most frequent in ovarian cancer (22/47 informative cases, 47%), particularly in the serous subtype (16/22, 73%), but was rare in benign and borderline ovarian tumours. AI was also common in breast cancer (31%), hepatocellular carcinoma (46%), squamous cell carcinoma of the tongue (50%) and metastatic melanoma (18%). AI is likely to represent amplification of the EDD gene locus rather than loss of heterozygosity, as quantitative RT–PCR and immunohistochemistry showed that EDD mRNA and protein are frequently overexpressed in breast and ovarian cancers, while among breast cancer cell lines EDD overexpression and increased gene copy number were correlated. These results demonstrate that AI at the EDD locus is common in a diversity of carcinomas and that the EDD gene is frequently overexpressed in breast and ovarian cancer, implying a potential role in cancer progression.


Journal of Biological Chemistry | 2006

EDD Mediates DNA Damage-induced Activation of CHK2

Michelle J. Henderson; Marcia A. Munoz; Darren N. Saunders; Jennifer L. Clancy; Amanda J. Russell; Brandi L. Williams; Darryl Pappin; Kum Kum Khanna; Robert L. Sutherland; Colin K. W. Watts

EDD, the human orthologue of Drosophila melanogaster “hyperplastic discs,” is overexpressed or mutated in a number of common human cancers. Although EDD has been implicated in DNA damage signaling, a definitive role has yet to be demonstrated. Here we report a novel interaction between EDD and the DNA damage checkpoint kinase CHK2. EDD and CHK2 associate through a phospho-dependent interaction involving the CHK2 Forkhead-associated domain and a region of EDD spanning a number of putative Forkhead-associated domain-binding threonines. Using RNA interference, we demonstrate a critical role for EDD upstream of CHK2 in the DNA damage signaling pathway. EDD is necessary for the efficient activating phosphorylation of CHK2 in response to DNA damage following exposure to ionizing radiation or the radiomimetic, phleomycin. Cells depleted of EDD display impaired CHK2 kinase activity and an inability to respond to DNA damage. These results identify EDD as a novel mediator in DNA damage signal transduction via CHK2 and emphasize the potential importance of EDD in cancer.


Cell Cycle | 2007

The E3 Ubiquitin Ligase EDD Regulates S-Phase and G2/M DNA Damage Checkpoints

Marcia A. Munoz; Darren N. Saunders; Michelle J. Henderson; Jennifer L. Clancy; Amanda J. Russell; Gillian M. Lehrbach; Elizabeth A. Musgrove; Colin K. W. Watts; Robert L. Sutherland

The cellular response to DNA damage is critical for maintenance of genomic integrity and inhibition of tumorigenesis. Mutations or aberrant expression of the E3 ubiquitin ligase EDD have been observed in a number of carcinomas and we recently reported that EDD modulates activity of the DNA damage checkpoint kinase, CHK2. Here, we demonstrate that EDD is necessary for G1/S and intra S phase DNA damage checkpoint activation and for the maintenance of G2/M arrest after double strand DNA breaks. Defective checkpoint activation in EDD-depleted cells led to radio-resistant DNA synthesis, premature entry into mitosis, accumulation of polyploid cells, and cell death via mitotic catastrophe. In addition to decreased CHK2 activation in EDD-depleted cells, the expression of several key cell cycle mediators including Cdc25A/C and E2F1 was altered, suggesting that these checkpoint defects may be both CHK2-dependent and -independent. These data support a role for EDD in the maintenance of genomic stability, emphasising the potential importance of dysregulated EDD expression and/or function in the evolution of cancer.


Journal of Biological Chemistry | 2010

Modulation of Myocardin Function by the Ubiquitin E3 Ligase UBR5

Guoqing Hu; Xiaobo Wang; Darren N. Saunders; Michelle J. Henderson; Amanda J. Russell; B. Paul Herring; Jiliang Zhou

Fully differentiated mature smooth muscle cells (SMCs) are characterized by the presence of a unique repertoire of smooth muscle-specific proteins. Although previous studies have shown myocardin to be a critical transcription factor for stimulating expression of smooth muscle-specific genes, the mechanisms regulating myocardin activity are still poorly understood. We used a yeast two-hybrid screen with myocardin as bait to search for factors that may regulate the transcriptional activity of the myocardin. From this screen we identified a HECT domain-containing protein UBR5 (ubiquitin protein ligase E3 component n-recognin 5) as a myocardin-binding protein. Previous studies have shown that HECT domain-containing proteins are ubiquitin E3 ligases that play an important role in protein degradation. UBR5 has, however, also been shown to regulate transcription independent of its E3 ligase activity. In the current study we demonstrated that UBR5 localized in the nuclei of SMCs and forms a complex with myocardin in vivo and in vitro. We also show that UBR5 specifically enhanced trans-activation of smooth muscle-specific promoters by the myocardin family of proteins. In addition, UBR5 significantly augmented the ability of myocardin to induce expression of endogenous SMC marker genes independent on its E3 ligase function. Conversely, depletion of endogenous UBR5 by small interfering RNA in fibroblast cells attenuated myocardin-induced smooth muscle-specific gene expression, and UBR5 knockdown in SMCs resulted in down-regulation of smooth muscle-specific genes. Furthermore, we found that UBR5 can attenuate myocardin protein degradation resulting in increased myocardin protein expression without affecting myocardin mRNA expression. The effects of UBR5 on myocardin requires only the HECT and UBR1 domains of UBR5. This study reveals an unexpected role for the ubiquitin E3 ligase UBR5 as an activator of smooth muscle differentiation through its ability to stabilize myocardin protein.


Cancer Research | 2007

Progestins Reinitiate Cell Cycle Progression in Antiestrogen-Arrested Breast Cancer Cells through the B-Isoform of Progesterone Receptor

Eileen McGowan; Amanda J. Russell; Viroj Boonyaratanakornkit; Darren N. Saunders; Gillian M. Lehrbach; C. Marcelo Sergio; Elizabeth A. Musgrove; Dean P. Edwards; Robert L. Sutherland

Estrogen treatment of MCF-7 human breast cancer cells allows the reinitiation of synchronous cell cycle progression in antiestrogen-arrested cells. Here, we report that progestins also reinitiate cell cycle progression in this model. Using clonal cell lines derived from progesterone receptor (PR)-negative MCF-7M13 cells expressing wild-type or mutant forms of PRA and PRB, we show that this effect is mediated via PRB, not PRA. Cell cycle progression did not occur with a DNA-binding domain mutant of PRB but was unaffected by mutation in the NH(2)-terminal, SH3 domain interaction motif, which mediates rapid progestin activation of c-Src. Thus, the progestin-induced proliferative response in antiestrogen-inhibited cells is mediated primarily by the transcriptional activity of PRB. Analysis of selected cell cycle targets showed that progestin treatment induced levels of cyclin D1 expression and retinoblastoma protein (Rb) phosphorylation similar to those induced by estradiol. In contrast, progestin treatment resulted in only a 1.2-fold induction of c-Myc compared with a 10-fold induction by estradiol. These results support the conclusion that progestin, in a PRB-dependent manner, can overcome the growth-inhibitory effects of antiestrogens in estrogen receptor/PR-positive breast cancer cells by the induction of cyclin D1 expression. The mediation of this effect by PRB, but not PRA, further suggests a mechanism whereby abnormal regulation of the normal expression ratios of PR isoforms in breast cancer could lead to the attenuation of antiestrogen-mediated growth arrest.


Breast Cancer Research | 2008

The estrogen and c-Myc target gene HSPC111 is over-expressed in breast cancer and associated with poor patient outcome.

Alison J. Butt; C. Marcelo Sergio; Claire K. Inman; Luke R. Anderson; Catriona M. McNeil; Amanda J. Russell; Marco Nousch; Thomas Preiss; Andrew V. Biankin; Robert L. Sutherland; Elizabeth A. Musgrove

IntroductionEstrogens play a pivotal role in the initiation and progression of breast cancer. The genes that mediate these processes are not fully defined, but potentially include the known mammary oncogene MYC. Characterization of estrogen-target genes may help to elucidate further the mechanisms of estrogen-induced mitogenesis and endocrine resistance.MethodsWe used a transcript profiling approach to identify targets of estrogen and c-Myc in breast cancer cells. One previously uncharacterized gene, namely HBV pre-S2 trans-regulated protein 3 (HSPC111), was acutely upregulated after estrogen treatment or inducible expression of c-Myc, and was selected for further functional analysis using over-expression and knock-down strategies. HSPC111 expression was also analyzed in relation to MYC expression and outcome in primary breast carcinomas and published gene expression datasets.ResultsPretreatment of cells with c-Myc small interfering RNA abrogated estrogen induction of HSPC111, identifying HSPC111 as a potential c-Myc target gene. This was confirmed by the demonstration of two functional E-box motifs upstream of the transcription start site. HSPC111 mRNA and protein were over-expressed in breast cancer cell lines and primary breast carcinomas, and this was positively correlated with MYC mRNA levels. HSPC111 is present in a large, RNA-dependent nucleolar complex, suggesting a possible role in ribosomal biosynthesis. Neither over-expression or small interfering RNA knock-down of HSPC111 affected cell proliferation rates or sensitivity to estrogen/antiestrogen treatment. However, high expression of HSPC111 mRNA was associated with adverse patient outcome in published gene expression datasets.ConclusionThese data identify HSPC111 as an estrogen and c-Myc target gene that is over-expressed in breast cancer and is associated with an adverse patient outcome.


Scientific Reports | 2015

Paclitaxel sensitivity in relation to ABCB1 expression, efflux and single nucleotide polymorphisms in ovarian cancer

Bo Gao; Amanda J. Russell; Jonathan Beesley; Xiaoqing Chen; Sue Healey; Michelle J. Henderson; Mark Wong; Catherine Emmanuel; Laura Galletta; Sharon E. Johnatty; David Bowtell; Michelle Haber; Murray D. Norris; Paul Harnett; Georgia Chenevix-Trench; Rosemary L. Balleine; Anna deFazio

ABCB1 (adenosine triphosphate-binding cassette transporter B1) mediates cellular elimination of many chemotherapeutic agents including paclitaxel, which is commonly used to treat ovarian cancer. A significant association between common single nucleotide polymorphisms (SNPs) in ABCB1 and progression-free survival has been reported in patients with ovarian cancer. Variable paclitaxel clearance due to genotype specific differences in ABCB1 activity in cancer cells and/or normal tissues may underlie the association. Using cell-based models, we evaluated the correlations between ABCB1 expression, polymorphisms, transporter activity and paclitaxel sensitivity in ovarian cancer (n = 10) and lymphoblastoid (n = 19) cell lines. Close associations between ABCB1 expression, transporter function and paclitaxel sensitivity were found in lymphoblastoid cell lines, although we could not demonstrate an association with common SNPs. In ovarian cancer cell lines, ABCB1 expression was low and the association between expression and function was lost. These results suggest that ABCB1 related survival difference in ovarian cancer patients is more likely to be due to differential whole body paclitaxel clearance mediated by normal cells rather than a direct effect on cancer cells.


Oncotarget | 2016

Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer

Juliet D. French; Sharon E. Johnatty; Yi Lu; Jonathan Beesley; Bo Gao; Murugan Kalimutho; Michelle J. Henderson; Amanda J. Russell; Siddhartha Kar; Xiaoqing Chen; Kristine M. Hillman; Susanne Kaufmann; Haran Sivakumaran; Martin O’Reilly; Chen Wang; Darren Korbie; Australian Cancer Study; Diether Lambrechts; Evelyn Despierre; Els Van Nieuwenhuysen; Sandrina Lambrechts; Ignace Vergote; Beth Y. Karlan; Jenny Lester; Sandra Orsulic; C. Walsh; Peter A. Fasching; Matthias W. Beckmann; Arif B. Ekici; Alexander Hein

Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7×10−5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.

Collaboration


Dive into the Amanda J. Russell's collaboration.

Top Co-Authors

Avatar

Michelle J. Henderson

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Michelle Haber

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Murray D. Norris

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Robert L. Sutherland

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darren N. Saunders

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Jamie I. Fletcher

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Glenn M. Marshall

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge