Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda K. Huber is active.

Publication


Featured researches published by Amanda K. Huber.


Journal of Experimental Medicine | 2015

Neutrophil-related factors as biomarkers in EAE and MS

Julie M. Rumble; Amanda K. Huber; Gurumoorthy Krishnamoorthy; Ashok Srinivasan; David A. Giles; Xu Zhang; Lu Wang; Benjamin M. Segal

Using a mouse model of multiple sclerosis (MS), the authors show that neutrophils expand in the bone marrow and accumulate in the circulation before clinical onset of disease. Early in disease development, neutrophils infiltrate the CNS, which is suppressed by G-CSF receptor deficiency and blockade of CXCL1 to ameliorate disease. In patients with MS, systemic expression of neutrophil-related mediators correlates with new lesion formation, lesion burden, and clinical disability.


Journal of Immunology | 2014

Site-Specific Chemokine Expression Regulates Central Nervous System Inflammation and Determines Clinical Phenotype in Autoimmune Encephalomyelitis

Joshua S. Stoolman; Patrick C. Duncker; Amanda K. Huber; Benjamin M. Segal

The adoptive transfer of myelin-reactive T cells into wild-type hosts results in spinal cord inflammation and ascending paralysis, referred to as conventional experimental autoimmune encephalomyelitis (EAE), as opposed to brainstem inflammation and ataxia, which characterize disease in IFN-γRKO hosts (atypical EAE). In this article, we show that atypical EAE correlates with preferential upregulation of CXCL2 in the brainstem, and is driven by CXCR2-dependent recruitment of neutrophils. In contrast, conventional EAE is associated with upregulation of CCL2 in the spinal cord, and is driven by recruitment of monocytes via a partially CCR2-dependent pathway. This study illustrates how regional differences in chemokine expression within a target organ shape the spatial pattern and composition of autoimmune infiltrates, leading to disparate clinical outcomes.


Journal of Immunology | 2015

Th Cell Diversity in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis.

Kevin S. Carbajal; Yevgeniya A. Mironova; Justin Theophilus Ulrich-Lewis; Deven Kulkarni; Heather M. Grifka-Walk; Amanda K. Huber; Peter Shrager; Roman J. Giger; Benjamin M. Segal

Multiple sclerosis (MS) is believed to be initiated by myelin-reactive CD4+ Th cells. IL-12–polarized Th1 cells, IL-23–polarized Th17 cells, and Th17 cells that acquire Th1 characteristics were each implicated in autoimmune pathogenesis. It is debated whether Th cells that can drive the development of demyelinating lesions are phenotypically diverse or arise from a single lineage. In the current study, we assessed the requirement of IL-12 or IL-23 stimulation, as well as Th plasticity, for the differentiation of T cells capable of inducing CNS axon damage. We found that stable murine Th1 and Th17 cells independently transfer experimental autoimmune encephalomyelitis (widely used as an animal model of MS) in the absence of IL-23 and IL-12, respectively. Plastic Th17 cells are particularly potent mediators of demyelination and axonopathy. In parallel studies, we identified MS patients who consistently mount either IFN-γ– or IL-17–skewed responses to myelin basic protein over the course of a year. Brain magnetic resonance imaging revealed that patients with mixed IFN-γ and IL-17 responses have relatively high T1 lesion burden, a measure of permanent axon damage. Our data challenge the dogma that IL-23 and Th17 plasticity are universally required for the development of experimental autoimmune encephalomyelitis. This study definitively demonstrates that autoimmune demyelinating disease can be driven by distinct Th-polarizing factors and effector subsets, underscoring the importance of a customized approach to the pharmaceutical management of MS.


Neurology | 2014

Dysregulation of the IL-23/IL-17 axis and myeloid factors in secondary progressive MS

Amanda K. Huber; Lu Wang; Peisong Han; Xu Zhang; Sven Ekholm; Ashok Srinivasan; David N. Irani; Benjamin M. Segal

Objective: In the current exploratory study, we longitudinally measured immune parameters in the blood of individuals with relapsing-remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS), and investigated their relationship to disease duration and clinical and radiologic measures of CNS injury. Methods: Peripheral blood mononuclear cells (PBMCs) and plasma were obtained from subjects with RRMS, SPMS, and from healthy controls on a monthly basis over the course of 1 year. MRI and Expanded Disability Status Scale evaluations were performed serially. PBMCs were analyzed by enzyme-linked immunosorbent spot assay to enumerate myelin basic protein–specific interleukin (IL)-17- and interferon (IFN)-γ-producing cells. Plasma concentrations of proinflammatory factors were measured using customized Luminex panels. Results: Frequencies of myelin basic protein–specific IL-17- and IFN-γ-producing PBMCs were higher in individuals with RRMS and SPMS compared to healthy controls. Patients with SPMS expressed elevated levels of IL-17–inducible chemokines that activate and recruit myeloid cells. In the cohort of patients with SPMS without inflammatory activity, upregulation of myeloid-related factors correlated directly with MRI T2 lesion burden and inversely with brain parenchymal tissue volume. Conclusions: The results of this exploratory study raise the possibility that Th17 responses and IL-17–inducible myeloid factors are elevated during SPMS compared with RRMS, and correlate with lesion burden. Our data endorse further investigation of Th17- and myeloid-related factors as candidate therapeutic targets in SPMS.


Advances in neuroimmune biology | 2015

Targeting CXCL13 During Neuroinflammation

Amanda K. Huber; David N. Irani

The chemokine, C-X-C motif ligand 13 (CXCL13), is constitutively expressed in lymphoid organs and controls the recruitment and compartmentalization of lymphocytes and antigen presenting cells within these specialized structures. Recent data, however, also find induction of this molecule during central nervous system (CNS) inflammation under a variety of circumstances. While its role(s) in the pathogenesis of neoplastic, infectious and autoimmune disorders of the CNS remain incompletely understood, several lines of evidence suggest that CXCL13 could become a relevant therapeutic target in at least some of these diseases. This review focuses on how CXCL13 contributes to the pathogenesis of selected CNS disorders involving both experimental animals and humans, paying particular attention to the issue of whether (and if so, how) blockade of this ligand or its receptor might benefit the host. Current blocking strategies largely involve the use of monoclonal antibodies, but an improved understanding of downstream signaling pathways makes small molecule inhibition a future possibility.


Journal of Biological Chemistry | 2016

Loss of the Ubiquitin-conjugating Enzyme Ube2W results in susceptibility to early postnatal lethality and defects in skin, immune and male reproductive systems

Bo Wang; Sean A. Merillat; Michael Vincent; Amanda K. Huber; Venkatesha Basrur; Doris Mangelberger; Li Zeng; Kojo S.J. Elenitoba-Johnson; Richard A. Miller; David N. Irani; Andrzej A. Dlugosz; Santiago Schnell; Kenneth Matthew Scaglione; Henry L. Paulson

UBE2W ubiquitinates N termini of proteins rather than internal lysine residues, showing a preference for substrates with intrinsically disordered N termini. The in vivo functions of this intriguing E2, however, remain unknown. We generated Ube2w germ line KO mice that proved to be susceptible to early postnatal lethality without obvious developmental abnormalities. Although the basis of early death is uncertain, several organ systems manifest changes in Ube2w KO mice. Newborn Ube2w KO mice often show altered epidermal maturation with reduced expression of differentiation markers. Mirroring higher UBE2W expression levels in testis and thymus, Ube2w KO mice showed a disproportionate decrease in weight of these two organs (∼50%), suggesting a functional role for UBE2W in the immune and male reproductive systems. Indeed, Ube2w KO mice displayed sustained neutrophilia accompanied by increased G-CSF signaling and testicular vacuolation associated with decreased fertility. Proteomic analysis of a vulnerable organ, presymptomatic testis, showed a preferential accumulation of disordered proteins in the absence of UBE2W, consistent with the view that UBE2W preferentially targets disordered polypeptides. These mice further allowed us to establish that UBE2W is ubiquitously expressed as a single isoform localized to the cytoplasm and that the absence of UBE2W does not alter cell viability in response to various stressors. Our results establish that UBE2W is an important, albeit not essential, protein for early postnatal survival and normal functioning of multiple organ systems.


Clinical Immunology | 2016

An emerging role for eotaxins in neurodegenerative disease.

Amanda K. Huber; David A. Giles; Benjamin M. Segal; David N. Irani

Eotaxins are C-C motif chemokines first identified as potent eosinophil chemoattractants. They facilitate eosinophil recruitment to sites of inflammation in response to parasitic infections as well as allergic and autoimmune diseases such as asthma, atopic dermatitis, and inflammatory bowel disease. The eotaxin family currently includes three members: eotaxin-1 (CCL11), eotaxin-2 (CCL24), and eotaxin-3 (CCL26). Despite having only ~30% sequence homology to one another, each was identified based on its ability to bind the chemokine receptor, CCR3. Beyond their role in innate immunity, recent studies have shown that CCL11 and related molecules may directly contribute to degenerative processes in the central nervous system (CNS). CCL11 levels increase in the plasma and cerebrospinal fluid of both mice and humans as part of normal aging. In mice, these increases are associated with declining neurogenesis and impaired cognition and memory. In humans, elevated plasma levels of CCL11 have been observed in Alzheimers disease, amyotrophic lateral sclerosis, Huntingtons disease, and secondary progressive multiple sclerosis when compared to age-matched, healthy controls. Since CCL11 is capable of crossing the blood-brain barrier of normal mice, it is plausible that eotaxins generated in the periphery may exert physiological and pathological actions in the CNS. Here, we briefly review known functions of eotaxin family members during innate immunity, and then focus on whether and how these molecules might participate in the progression of neurodegenerative diseases.


Frontiers in Oncology | 2014

Immune responses to non-tumor antigens in the central nervous system

Amanda K. Huber; Patrick C. Duncker; David N. Irani

The central nervous system (CNS), once viewed as an immune-privileged site protected by the blood–brain barrier (BBB), is now known to be a dynamic immunological environment through which immune cells migrate to prevent and respond to events such as localized infection. During these responses, endogenous glial cells, including astrocytes and microglia, become highly reactive and may secrete inflammatory mediators that regulate BBB permeability and recruit additional circulating immune cells. Here, we discuss the various roles played by astrocytes, microglia, and infiltrating immune cells during host immunity to non-tumor antigens in the CNS, focusing first on bacterial and viral infections, and then turning to responses directed against self-antigens in the setting of CNS autoimmunity.


Frontiers in Oncology | 2015

Is the Concept of Central Nervous System Immune Privilege Irrelevant in the Setting of Acute Infection

Amanda K. Huber; David N. Irani

While historically viewed as an immune-privileged area fully isolated from the immune system, the central nervous system (CNS) is now appreciated to maintain dynamic bi-directional communication with the immune system across the blood–brain barrier (BBB) (1, 2). In no setting can this communication be more urgent that acute CNS infection – a dampened or delayed host response could allow an invading virus or bacterium to gain a foothold within the brain, while over-exuberant or protracted inflammation might cause substantial collateral damage to sensitive and non-renewable cells such as neurons. In this opinion piece, we compare host immunity against one prototype virus and one prototype bacterium known to cause disease either outside or within the CNS. Allowing for some variability in disease pathogenesis, and leaving aside complex issues related to chronic intrauterine or neonatal infections, we argue that antimicrobial host responses in both CNS and non-CNS tissue compartments of adult hosts who acquire these infections exhibit many more similarities than differences. In this setting, the concept of CNS immune privilege seems antiquated.


Journal of Immunology | 2018

GM-CSF Promotes Chronic Disability in Experimental Autoimmune Encephalomyelitis by Altering the Composition of Central Nervous System–Infiltrating Cells, but Is Dispensable for Disease Induction

Patrick C. Duncker; Joshua S. Stoolman; Amanda K. Huber; Benjamin M. Segal

GM-CSF has been portrayed as a critical cytokine in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and, ostensibly, in multiple sclerosis. C57BL/6 mice deficient in GM-CSF are resistant to EAE induced by immunization with myelin oligodendrocyte glycoprotein (MOG)35–55. The mechanism of action of GM-CSF in EAE is poorly understood. In this study, we show that GM-CSF augments the accumulation of MOG35–55-specific T cells in the skin draining lymph nodes of primed mice, but it is not required for the development of encephalitogenic T cells. Abrogation of GM-CSF receptor signaling in adoptive transfer recipients of MOG35–55-specific T cells did not alter the incidence of EAE or the trajectory of its initial clinical course, but it limited the extent of chronic CNS tissue damage and neurologic disability. The attenuated clinical course was associated with a relative dearth of MOG35–55-specific T cells, myeloid dendritic cells, and neutrophils, as well as an abundance of B cells, within CNS infiltrates. Our data indicate that GM-CSF drives chronic tissue damage and disability in EAE via pleiotropic pathways, but it is dispensable during early lesion formation and the onset of neurologic deficits.

Collaboration


Dive into the Amanda K. Huber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin M. Segal

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lu Wang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xu Zhang

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge