Amanda L. Aloia
Flinders University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amanda L. Aloia.
Journal of Biomolecular Screening | 2005
Wayne R. Leifert; Amanda L. Aloia; Olgatina Bucco; Richard Glatz; Edward J. McMurchie
Signal transduction by G-protein-coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to activation of a genericmolecular switch involving heterotrimeric G-proteins and guanine nucleotides. Signal transduction has been studied extensively with both cell-based systems and assays comprising isolated signaling components. Interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, highthroughput screening, biosensors, and so on will focus greater attention on assay development to allow for miniaturization, ultra-high throughput and, eventually, microarray/biochip assay formats. Although cell-based assays are adequate for many GPCRs, it is likely that these formatswill limit the development of higher density GPCRassay platforms mandatory for other applications. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR assay platforms adaptable for such applications as microarrays. The authors review current cell-free GPCR assay technologies and molecular biological approaches for construction of novel, functional GPCR assays.
Hepatology | 2013
Erin M. McCartney; Karla J. Helbig; Sumudu K. Narayana; Nicholas S. Eyre; Amanda L. Aloia; Michael R. Beard
Host factors play an important role in all facets of the hepatitis C virus (HCV) life cycle and one such host factor is signal transducer and activator of transcription 3 (STAT3). The HCV core protein has been shown to directly interact with and activate STAT3, while oxidative stress generated during HCV replication in a replicon‐based model also induced STAT3 activation. However, despite these findings the precise role of STAT3 in the HCV life cycle remains unknown. We have established that STAT3 is actively phosphorylated in the presence of replicating HCV. Furthermore, expression of a constitutively active form of STAT3 leads to marked increases in HCV replication, whereas, conversely, chemical inhibition and small interfering RNA (siRNA) knockdown of STAT3 leads to significant decreases in HCV RNA levels. This strongly implicates STAT3 as a proviral host factor. As STAT3 is a transcription factor, up‐regulation of a distinct set of STAT3‐dependent genes may create an environment that is favorable for HCV replication. However, STAT3 has recently been demonstrated to positively regulate microtubule (MT) dynamics, by way of a direct sequestration of the MT depolymerizing protein Stathmin 1 (STMN1), and we provide evidence that STAT3 may exert its effect on the HCV life cycle by way of positive regulation of MT dynamics. Conclusion: We have demonstrated that STAT3 plays a role in the life cycle of HCV and have clarified the role of STAT3 as a proviral host factor. (HEPATOLOGY 2013;58:1558–1568)
Journal of Virology | 2014
Nicholas S. Eyre; Guillaume N. Fiches; Amanda L. Aloia; Karla J. Helbig; Erin M. McCartney; Christopher S. P. McErlean; Kui Li; Anupriya Aggarwal; Stuart Turville; Michael R. Beard
ABSTRACT Hepatitis C virus (HCV) NS5A is essential for viral genome replication within cytoplasmic replication complexes and virus assembly at the lipid droplet (LD) surface, although its definitive functions are poorly understood. We developed approaches to investigate NS5A dynamics during a productive infection. We report here that NS5A motility and efficient HCV RNA replication require the microtubule network and the cytoplasmic motor dynein and demonstrate that both motile and relatively static NS5A-positive foci are enriched with host factors VAP-A and Rab5A. Pulse-chase imaging revealed that newly synthesized NS5A foci are small and distinct from aged foci, while further studies using a unique dual fluorescently tagged infectious HCV chimera showed a relatively stable association of NS5A foci with core-capped LDs. These results reveal new details about the dynamics and maturation of NS5A and the nature of potential sites of convergence of HCV replication and assembly pathways. IMPORTANCE Hepatitis C virus (HCV) is a major cause of serious liver disease worldwide. An improved understanding of the HCV replication cycle will enable development of novel and improved antiviral strategies. Here we have developed complementary fluorescent labeling and imaging approaches to investigate the localization, traffic and interactions of the HCV NS5A protein in living, virus-producing cells. These studies reveal new details as to the traffic, composition and biogenesis of NS5A foci and the nature of their association with putative sites of virus assembly.
Antiviral Therapy | 2012
Amanda L. Aloia; Stephen Locarnini; Michael R. Beard
Direct-acting antiviral (DAA) agents specifically target viral proteins. Two DAAs have been already been approved for the treatment of HCV infection and many more are in development. DAA treatment of HCV infection, however, leads to the selection of viral variants (produced by the error-prone HCV polymerase) that are resistant to the DAA agent in use. The selection of DAA-resistant HCV variants has been studied extensively in vitro and in vivo. Common amino acid substitution sites in each of the non-structural proteins are associated with DAA-resistance: D168, A155, A156 and V36 in NS3 protease; L31 and Y93 in NS5A; S282, S96, P495, M423, M414 and C316 in NS5B. In this review we cover the basic principles of DAA resistance, summarise the available resistance data for the various classes of DAAs and discuss the potential of DAA combination therapy for overcoming DAA-resistance, resulting in major advances in the treatment of HCV.
Molecular Membrane Biology | 2005
Wayne R. Leifert; Amanda L. Aloia; Olgatina Bucco; Edward J. McMurchie
G-protein coupled receptors (GPCRs) form a ternary complex of agonist, receptor and G-proteins during primary signal transduction at the cell membrane. Downstream signalling is thought to be preceded by the process of dissociation of Gα and Gβγ subunits, thus exposing new surfaces to interact with downstream effectors. We demonstrate here for the first time, the dissociation of heterotrimeric G-protein subunits (i.e., Gα and Gβγ) following agonist-induced GPCR (α2A-adrenergic receptor; α2A-AR) activation in a cell-free assay system. α2A-AR membranes were reconstituted with the G-proteins (±hexahistidine-tagged) Gαi1 and Gβ1γ2 and functional signalling was determined following activation of the reconstituted receptor:G-protein complex with the potent agonist UK-14304, and [35S]GTPγS. In the presence of Ni2+-coated agarose beads, the activated his-tagged Gαi1his-[35S]GTPγS complex was captured on the Ni2+-presenting surface. When his-tagged Gβ1γ2 (Gβ1γ2his) was used with Gαi1, the [35S]GTPγS-bound Gαi1 was not present on the Ni2+-coated beads, but rather, it was separated from the β1γ2(his)-beads, demonstrating receptor-induced dissociation of Gα and Gβγ subunits. Treatment of the reconstituted α2A-AR membranes containing Gβ1γ2his:Gαi1 with imidazole confirmed the specificity for the Ni2+:G-protein surface dissociation of Gαi1 from Gβ1γ2his. These data demonstrate for the first time, the complete dissociation of the G-protein subunits and extend observations on the role of G-proteins in the assembly and disassembly of the ternary complex in the primary events of GPCR signalling.
Journal of General Virology | 2016
Jennifer N Clarke; Davies Lk; Julie K. Calvert; Briony L. Gliddon; Al Shujari Wh; Amanda L. Aloia; Karla J. Helbig; Michael R. Beard; Stuart M. Pitson; Jillian M. Carr
Sphingosine kinase (SK) 1 is a host kinase that enhances some viral infections. Here we investigated the ability of SK1 to modulate dengue virus (DENV) infection in vitro. Overexpression of SK1 did not alter DENV infection; however, targeting SK1 through chemical inhibition resulted in reduced DENV RNA and infectious virus release. DENV infection of SK1⁻/ ⁻ murine embryonic fibroblasts (MEFs) resulted in inhibition of infection in an immortalized line (iMEF) but enhanced infection in primary MEFs (1°MEFs). Global cellular gene expression profiles showed expected innate immune mRNA changes in DENV-infected WT but no induction of these responses in SK1⁻/⁻ iMEFs. Reverse transciption PCR demonstrated a low-level induction of IFN-β and poor induction of mRNA for the interferon-stimulated genes (ISGs) viperin, IFIT1 and CXCL10 in DENV-infected SK1⁻/⁻ compared with WT iMEFs. Similarly, reduced induction of ISGs was observed in SK1⁻/⁻ 1°MEFs, even in the face of high-level DENV replication. In both iMEFs and 1°MEFs, DENV infection induced production of IFN-β protein. Additionally, higher basal levels of antiviral factors (IRF7, CXCL10 and OAS1) were observed in uninfected SK1⁻/⁻ iMEFs but not 1°MEFs. This suggests that, in this single iMEF line, lack of SK1 upregulates the basal levels of factors that may protect cells against DENV infection. More importantly, regardless of the levels of DENV replication, all cells that lacked SK1 produced IFN-β but were refractory to induction of ISGs such as viperin, IFIT1 and CXCL10. Based on these findings, we propose new roles for SK1 in affecting innate responses that regulate susceptibility to DENV infection.
Methods of Molecular Biology | 2009
Amanda L. Aloia; Richard Glatz; Edward J. McMurchie; Wayne R. Leifert
Expression of proteins in insect cells using recombinant baculoviruses has gained wide use in the G protein-coupled receptor (GPCR) community. This expression system produces high yields of functional receptor, is able to perform post-translational modifications, and is readily adaptable to large-scale culture. Here, we describe the generic methods for expressing a GPCR using baculovirus-infected insect cells, including the maintenance of insect cell culture. Data are presented for polyhedrin promoter-driven expression of a C-terminal 6 x histidine-tagged mammalian M(2) muscarinic receptor in Sf9 cells. Results demonstrate that expressed receptor could be detected and quantified using radiolabeled ligand binding, that expression was maximal at approximately 72 h post-infection, and that expression levels could be altered by addition of various ligands to cultures of infected insect cells.
Mediators of Inflammation | 2015
Amanda L. Aloia; Alexander M. Abraham; Claudine S. Bonder; Stuart M. Pitson; Jillian M. Carr
One of the main pathogenic effects of severe dengue virus (DENV) infection is a vascular leak syndrome. There are no available antivirals or specific DENV treatments and without hospital support severe DENV infection can be life-threatening. The cause of the vascular leakage is permeability changes in the endothelial cells lining the vasculature that are brought about by elevated vasoactive cytokine and chemokines induced following DENV infection. The source of these altered cytokine and chemokines is traditionally believed to be from DENV-infected cells such as monocyte/macrophages and dendritic cells. Herein we discuss the evidence for the endothelium as an additional contributor to inflammatory and innate responses during DENV infection which may affect endothelial cell function, in particular the ability to maintain vascular integrity. Furthermore, we hypothesise roles for two factors, sphingosine kinase-1 and microRNAs (miRNAs), with a focus on several candidate miRNAs, which are known to control normal vascular function and inflammatory responses. Both of these factors may be potential therapeutic targets to regulate inflammation of the endothelium during DENV infection.
Antiviral Therapy | 2014
Amanda L. Aloia; Nicholas S. Eyre; Stuart Black; Stephen J. Bent; Adriana Gaeguta; Zhuyan Guo; Sumudu K. Narayana; Robert Chase; Stephen Locarnini; Jill M. Carr; John A. Howe; Michael R. Beard
BACKGROUND Genotype (gt)6 HCV is common amongst HCV-positive populations of the Asia-Pacific region but cell culture models for this gt have only recently been developed. Boceprevir (SCH503034) is a clinically available inhibitor of the HCV NS3 protein. We investigated the efficacy of boceprevir for inhibiting replication of a chimeric gt1b replicon encoding a gt6a NS3 protease and defined the development of mutations in the protease when boceprevir treatment was applied. METHODS We constructed a chimeric gt1b subgenomic replicon encoding a gt6 NS3 protease (NS3p) sequence (gt6NS3p_gt1b). The boceprevir EC50 value against replication of this replicon was determined using quantitative reverse transcriptase PCR. Next-generation sequencing was used to identify nucleotide changes associated with boceprevir resistance. The replication capacities of chimeric replicons containing mutations associated with boceprevir resistance were determined by colony formation efficiency assays. RESULTS The boceprevir EC50 value for the gt6NS3p_gt1b replicon was 535 ±79 nM. Boceprevir-resistant gt6NS3p_gt1b replicon cell lines could be selected and they demonstrated drug-associated amino acid changes that have previously been reported in other HCV gts. Interestingly, no mutations were observed at A156, a position defined for boceprevir resistance in gt1 NS3p, while mutation at N122, which is rarely reported in boceprevir-resistant gt1 proteases, was frequently observed. Re-introduction of these mutations into the chimeric replicon altered their replication capacity, ranging from complete abolishment of replication (A156T) to increasing replication capacity (V36A, N122S). This report provides the first characterization of gt6 HCV resistance to boceprevir. CONCLUSIONS A chimeric HCV replicon encoding gt6 NS3 protease is sensitive to boceprevir and develops drug-resistant mutations at amino acid sites previously reported for other gts. Mutation at N122 also appears to be associated with boceprevir resistance in the gt6 NS3 protease.
Australian Journal of Chemistry | 2007
Richard Glatz; Wayne R. Leifert; Tamara H. Cooper; Kelly Bailey; Christopher S. Barton; A. Scott Martin; Amanda L. Aloia; Olgatina Bucco; Lakshmi Waniganayake; Gang Wei; Burkhard Raguse; Lech Wieczorek; Edward J. McMurchie
The ability to express and purify modified recombinant proteins, so they retain their biological function in a cell-free format, has provided a basis for development of molecular biosensors. Here we utilize recombinant G Protein-coupled receptors (GPCRs) and their G proteins for cell-free detection of various binding partners. Fusion peptides were used to improve surface-attachment and fluorescent-labelling capabilities. A novel homogeneous fluorescence resonance energy transfer (FRET)-based assay was developed to detect rearrangements in the G protein heterotrimer. By using this heterotrimeric ‘molecular switch’, we are developing a generic technology such that multiple GPCRs could be assayed for ligand-mediated activation while tethered to surfaces or in solution, with increased throughput compared to current assay platforms.
Collaboration
Dive into the Amanda L. Aloia's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs