Amanda L. Kaas
Maastricht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amanda L. Kaas.
Neuron | 2007
Roi Cohen Kadosh; Kathrin Cohen Kadosh; Amanda L. Kaas; Avishai Henik; Rainer Goebel
It is a commonly held view that numbers are represented in an abstract way in both parietal lobes. This view is based on failures to find differences between various notational representations. Here we show that by using relatively smaller voxels together with an adaptation paradigm and analyzing subjects on an individual basis it is possible to detect specialized numerical representations. The current results reveal a left/right asymmetry in parietal lobe function. In contrast to an abstract representation in the left parietal lobe, the numerical representation in the right parietal lobe is notation dependent and thus includes nonabstract representations. Our results challenge the commonly held belief that numbers are represented solely in an abstract way in the human brain.
Current Biology | 2007
Roi Cohen Kadosh; Kathrin Cohen Kadosh; Teresa Schuhmann; Amanda L. Kaas; Rainer Goebel; Avishai Henik; Alexander T. Sack
People suffering from developmental dyscalculia encounter difficulties in automatically accessing numerical magnitudes [1-3]. For example, when instructed to attend to the physical size of a number while ignoring its numerical value, dyscalculic subjects, unlike healthy participants, fail to process the irrelevant dimension automatically and subsequently show a smaller size-congruity effect (difference in reaction time between incongruent [e.g., a physically large 2 and a physically small 4] and congruent [e.g., a physically small 2 and a physically large 4] conditions), and no facilitation (neutral [e.g., a physically small 2 and a physically large 2] versus congruent) [3]. Previous imaging studies determined the intraparietal sulcus (IPS) as a central area for numerical processing [4-11]. A few studies tried to identify the brain dysfunction underlying developmental dyscalculia but yielded mixed results regarding the involvement of the left [12] or the right [13] IPS. Here we applied fMRI-guided TMS neuronavigation to disrupt left- or right-IPS activation clusters in order to induce dyscalculic-like behavioral deficits in healthy volunteers. Automatic magnitude processing was impaired only during disruption of right-IPS activity. When using the identical paradigm with dyscalculic participants, we reproduced a result pattern similar to that obtained with nondyscalculic volunteers during right-IPS disruption. These findings provide direct evidence for the functional role of right IPS in automatic magnitude processing.
NeuroImage | 2010
Amanda L. Kaas; Sarah Weigelt; Alard Roebroeck; Axel Kohler; Lars Muckli
Visual imagery--similar to visual perception--activates feature-specific and category-specific visual areas. This is frequently observed in experiments where the instruction is to imagine stimuli that have been shown immediately before the imagery task. Hence, feature-specific activation could be related to the short-term memory retrieval of previously presented sensory information. Here, we investigated mental imagery of stimuli that subjects had not seen before, eliminating the effects of short-term memory. We recorded brain activation using fMRI while subjects performed a behaviourally controlled guided imagery task in predefined retinotopic coordinates to optimize sensitivity in early visual areas. Whole brain analyses revealed activation in a parieto-frontal network and lateral-occipital cortex. Region of interest (ROI) based analyses showed activation in left hMT/V5+. Granger causality mapping taking left hMT/V5+ as source revealed an imagery-specific directed influence from the left inferior parietal lobule (IPL). Interestingly, we observed a negative BOLD response in V1-3 during imagery, modulated by the retinotopic location of the imagined motion trace. Our results indicate that rule-based motion imagery can activate higher-order visual areas involved in motion perception, with a role for top-down directed influences originating in IPL. Lower-order visual areas (V1, V2 and V3) were down-regulated during this type of imagery, possibly reflecting inhibition to avoid visual input from interfering with the imagery construction. This suggests that the activation in early visual areas observed in previous studies might be related to short- or long-term memory retrieval of specific sensory experiences.
Human Brain Mapping | 2013
Amanda L. Kaas; Hanneke I. van Mier; Maya Visser; Rainer Goebel
Fine surface texture is best discriminated by touch, in contrast to macro geometric features like shape. We used functional magnetic resonance imaging and a delayed match‐to‐sample task to investigate the neural substrate for working memory of tactile surface texture. Blindfolded right‐handed males encoded the texture or location of up to four sandpaper stimuli using the dominant or non‐dominant hand. They maintained the information for 10–12 s and then answered whether a probe stimulus matched the memory array. Analyses of variance with the factors Hand, Task, and Load were performed on the estimated percent signal change for the encoding and delay phase. During encoding, contralateral effects of Hand were found in sensorimotor regions, whereas Load effects were observed in bilateral postcentral sulcus (BA2), secondary somatosensory cortex (S2), pre‐SMA, dorsolateral prefrontal cortex (dlPFC), and superior parietal lobule (SPL). During encoding and delay, Task effects (texture > location) were found in central sulcus, S2, pre‐SMA, dlPFC, and SPL. The Task and Load effects found in hand‐ and modality‐specific regions BA2 and S2 indicate involvement of these regions in the tactile encoding and maintenance of fine surface textures. Similar effects in hand‐ and modality‐unspecific areas dlPFC, pre‐SMA and SPL suggest that these regions contribute to the cognitive monitoring required to encode and maintain multiple items. Our findings stress both the particular importance of S2 for the encoding and maintenance of tactile surface texture, as well as the supramodal nature of parieto‐frontal networks involved in cognitive control. Hum Brain Mapp, 2013.
NeuroImage | 2013
Judith Eck; Amanda L. Kaas; Rainer Goebel
Both visual and haptic information add to the perception of surface texture. While prior studies have reported crossmodal interactions of both sensory modalities at the behavioral level, neuroimaging studies primarily investigated texture perception in separate visual and haptic paradigms. These experimental designs, however, only allowed to identify overlap in both sensory processing streams but no interaction of visual and haptic texture processing. By varying texture characteristics in a bimodal task, the current study investigated how these crossmodal interactions are reflected at the cortical level. We used fMRI to compare cortical activation in response to matching versus non-matching visual-haptic texture information. We expected that passive simultaneous presentation of matching visual-haptic input would be sufficient to induce BOLD responses graded with varying texture characteristics. Since no cognitive evaluation of the stimuli was required, we expected to find changes primarily at a rather early processing stage. Our results confirmed our assumptions by showing crossmodal interactions of visual-haptic texture information in early somatosensory and visual cortex. However, the nature of the crossmodal effects was slightly different in both sensory cortices. In early visual cortex, matching visual-haptic information increased the average activation level and induced parametric BOLD signal variations with varying texture characteristics. In early somatosensory cortex only the latter was true. These results challenge the notion that visual and haptic texture information is processed independently and indicate a crossmodal interaction of sensory information already at an early cortical processing stage.
PLOS ONE | 2014
Anna Zilverstand; Bettina Sorger; Jan Zimmermann; Amanda L. Kaas; Rainer Goebel
The goal of neurofeedback training is to provide participants with relevant information on their ongoing brain processes in order to enable them to change these processes in a meaningful way. Under the assumption of an intrinsic brain-behavior link, neurofeedback can be a tool to guide a participant towards a desired behavioral state, such as a healthier state in the case of patients. Current research in clinical neuroscience regarding the most robust indicators of pathological brain processes in psychiatric and neurological disorders indicates that fMRI-based functional connectivity measures may be among the most important biomarkers of disease. The present study therefore investigated the general potential of providing fMRI neurofeedback based on functional correlations, computed from short-window time course data at the level of single task periods. The ability to detect subtle changes in task performance with block-wise functional connectivity measures was evaluated based on imaging data from healthy participants performing a simple motor task, which was systematically varied along two task dimensions representing two different aspects of task difficulty. The results demonstrate that fMRI-based functional connectivity measures may provide a better indicator for an increase in overall (motor) task difficulty than activation level-based measures. Windowed functional correlations thus seem to provide relevant and unique information regarding ongoing brain processes, which is not captured equally well by standard activation level-based neurofeedback measures. Functional connectivity markers, therefore, may indeed provide a valuable tool to enhance and monitor learning within an fMRI neurofeedback setup.
Human haptic perception: basics and applications | 2008
Amanda L. Kaas; M. Cornelia Stoeckel; Rainer Goebel
When deciding which kiwi fruit or pear needs eating first or which drink has the right temperature to be consumed on a warm day, we are likely to explore and compare hardness or temperature using our hands. The process that enables us to keep the relevant information active for task performance over a short period of time is called ‘working memory’ (WM) [1]. WM allows us to hold stimulus characteristics on-line to guide behaviour in the absence of external cues or prompts [2]. Without active WM, initial oercepts decay quickly with different time constants for different input modalities (Box 1).
Acta Psychologica | 2013
Judith Eck; Amanda L. Kaas; Joost Mulders; Rainer Goebel
Both vision and touch yield comparable results in terms of roughness estimation of familiar textures as was shown in earlier studies. To our knowledge, no research has been conducted on the effect of sensory familiarity with the stimulus material on roughness estimation of unfamiliar textures. The influence of sensory modality and familiarity on roughness perception of dot pattern textures was investigated in a series of five experiments. Participants estimated the roughness of textures varying in mean center-to-center dot spacing in experimental conditions providing visual, haptic and visual-haptic combined information. The findings indicate that roughness perception of unfamiliar dot pattern textures is well described by a bi-exponential function of inter-dot spacing, regardless of the sensory modality used. However, sensory modality appears to affect the maximum of the psychophysical roughness function, with visually perceived roughness peaking for a smaller inter-dot spacing than haptic roughness. We propose that this might be due to the better spatial acuity of the visual modality. Individuals appeared to use different visual roughness estimation strategies depending on their first sensory experience (visual vs. haptic) with the stimulus material, primarily in an experimental context which required the combination of visual and haptic information in a single bimodal roughness estimate. Furthermore, the similarity of findings in experimental settings using real and virtual visual textures indicates the suitability of the experimental setup for neuroimaging studies, creating a more direct link between behavioral and neuroimaging results.
Experimental Brain Research | 2007
Amanda L. Kaas; Hanneke I. van Mier; Johan Lataster; Mirella Fingal; Alexander T. Sack
Eye-hand coordination is crucial for everyday visuo-haptic object-manipulation. Noninformative vision has been reported to improve haptic spatial tasks relying on world-based reference frames. The current study investigated whether the degree of visuo-haptic congruity systematically affects haptic task performance. Congruent and parametrically varied incongruent visual orientation cues were presented while participants manually explored the orientation of a reference bar stimulus. Participants were asked to haptically match this reference orientation by turning a test bar either to a parallel or mirrored orientation, depending on the instruction. While parallel matching can only be performed correctly in a world-based frame, mirror matching (in the mid-sagittal plane) can also be achieved in a body-centered frame. We revealed that visuo-haptic incongruence affected parallel but not mirror matching responses in size and direction. Parallel matching did not improve when congruent visual orientation cues were provided throughout a run, and mirror matching even deteriorated. These results show that there is no positive effect of visual input on haptic performance per se. Tasks, which favor a body-centered frame are immune to incongruent visual input, while such input parametrically modulates performance on world-based haptic tasks.
Cerebral Cortex | 2016
Judith Eck; Amanda L. Kaas; Joost Mulders; Lars Hausfeld; Zoe Kourtzi; Rainer Goebel
Perceived roughness is associated with a variety of physical factors and multiple peripheral afferent types. The current study investigated whether this complexity of the mapping between physical and perceptual space is reflected at the cortical level. In an integrative psychophysical and imaging approach, we used dot pattern stimuli for which previous studies reported a simple linear relationship of interdot spacing and perceived spatial density and a more complex function of perceived roughness. Thus, by using both a roughness and a spatial estimation task, the physical and perceived stimulus characteristics could be dissociated, with the spatial density task controlling for the processing of low-level sensory aspects. Multivoxel pattern analysis was used to investigate which brain regions hold information indicative of the level of the perceived texture characteristics. While information about differences in perceived roughness was primarily available in higher-order cortices, that is, the operculo-insular cortex and a ventral visual cortex region, information about perceived spatial density could already be derived from early somatosensory and visual regions. This result indicates that cortical processing reflects the different complexities of the evaluated haptic texture dimensions. Furthermore, this study is to our knowledge the first to show a contribution of the visual cortex to tactile roughness perception.