Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda M. Agnew is active.

Publication


Featured researches published by Amanda M. Agnew.


American Journal of Physical Anthropology | 2009

Stature estimation in an early medieval (XI-XII c.) Polish population: Testing the accuracy of regression equations in a bioarcheological sample

Giuseppe Vercellotti; Amanda M. Agnew; Hedy M. Justus; Paul W. Sciulli

Accurate stature estimation from skeletal remains can foster useful information on health and microevolutionary trends in past human populations. Stature can be estimated through the anatomical method and regression equations. The anatomical method (Fully: Ann Med Leg 36 [1956] 266-273; Raxter et al.: Am J Phys Anthropol 130 [2006] 374-384) is preferable because it takes into account total skeletal height and thus provides more accurate estimates, but it cannot be applied to incomplete remains. In such circumstances, regression equations allow estimates of living stature from the length of one or few skeletal elements. However, the accuracy of stature estimates from regression equations depends on similarity in body proportions between the population under examination and those used to calibrate the equations. Since genetic affinity and body proportions similarity are not always clearly known in bioarcheological populations, the criteria for selection of appropriate formulae are not always straightforward. This may lead to inaccurate stature estimates and imprecise accounts of past life conditions. Prompted by such practical and theoretical concerns this study aimed at (1) estimating living stature in an early medieval (XI-XII c.) Polish sample (40 male; 20 female) through the anatomical method and developing population-specific regression formulae; and (2) evaluating the accuracy of estimates obtained with regression methods commonly employed in European populations. Results indicate that when applied to the skeletal remains from Giecz, our formulae provide accurate estimates, with non-age-corrected formulae performing better than age-corrected ones. Our formulae provide better estimates than those calibrated on recent populations and their use in medieval Polish populations is preferable.


American Journal of Physical Anthropology | 2014

Exploring the multidimensionality of stature variation in the past through comparisons of archaeological and living populations

Giuseppe Vercellotti; Barbara A. Piperata; Amanda M. Agnew; Warren Wilson; Darna L. Dufour; Julio C. Reina; Rosa Boano; Hedy M. Justus; Clark Spencer Larsen; Sam D. Stout; Paul W. Sciulli

Adult stature variation is commonly attributed to differential stress-levels during development. However, due to selective mortality and heterogeneous frailty, a populations tall stature may be more indicative of high selective pressures than of positive life conditions. This article examines stature in a biocultural context and draws parallels between bioarchaeological and living populations to explore the multidimensionality of stature variation in the past. This study investigates: 1) stature differences between archaeological populations exposed to low or high stress (inferred from skeletal indicators); 2) similarities in growth retardation patterns between archaeological and living groups; and 3) the apportionment of variance in growth outcomes at the regional level in archaeological and living populations. Anatomical stature estimates were examined in relation to skeletal stress indicators (cribra orbitalia, porotic hyperostosis, linear enamel hypoplasia) in two medieval bioarchaeological populations. Stature and biocultural information were gathered for comparative living samples from South America. Results indicate 1) significant (P < 0.01) differences in stature between groups exposed to different levels of skeletal stress; 2) greater prevalence of stunting among living groups, with similar patterns in socially stratified archaeological and modern groups; and 3) a degree of regional variance in growth outcomes consistent with that observed for highly selected traits. The relationship between early stress and growth is confounded by several factors-including catch-up growth, cultural buffering, and social inequality. The interpretations of early life conditions based on the relationship between stress and stature should be advanced with caution.


American Journal of Physical Anthropology | 2012

Brief communication: Reevaluating osteoporosis in human ribs: the role of intracortical porosity.

Amanda M. Agnew; Sam D. Stout

Osteoporosis is a major health concern in modern society and is continually being evaluated in past populations by quantifying bone loss. Cortical area measures are commonly used in anthropological analyses to assess bone loss in the ribs, but these values are typically based on endosteal expansion and do not account for intracortical bone loss. The objective of this study is to evaluate the effectiveness of using absolute cortical area, compared to traditional cortical area measures to describe global bone loss in elderly ribs. Transverse sections were prepared from sixth ribs of ten elderly subjects, and bone area measurements were made from 100× magnification composites of each rib for calculation of cortical area (Ct.Ar) and percent cortical area (% C/T). In addition, all areas of intracortical porosity were measured and percent porosity area (% Po.Ar) calculated. Absolute cortical area (Ct.Ar(A)) was calculated by subtracting porosity area from cortical area, and a percent absolute cortical area (% C(A)/T) calculated. ANOVA results reveal significant interindividual variation in percent porosity area (% Po.Ar). Percent cortical area and percent absolute cortical area values were compared and results show a mean difference of 4.08% exists across all subjects, with a range of 1.19-11.73%. This suggests that intracortical porosity is variable and does play a role in age-associated bone loss in the rib. All future investigations of osteoporosis should account for intracortical porosity in bone loss.


Journal of The Mechanical Behavior of Biomedical Materials | 2015

The effect of age on the structural properties of human ribs

Amanda M. Agnew; Michelle Schafman; Kevin Moorhouse; Susan E. White; Yun-Seok Kang

Traumatic injury from motor vehicle crashes is a major cause of morbidity and mortality in the United States. The thorax is particularly at risk in motor vehicle crashes and is studied extensively by the injury biomechanics community. Unfortunately, most samples used in such research generally do not include children or the very elderly, despite the common occurrence of thorax injuries at both ends of the age spectrum. Rib fractures in particular, are one of the most common injuries, especially in the elderly, and can greatly affect morbidity, mortality, and quality of life. As the proportion of older adults in the population increases, such age-related fragility fractures will continually grow as a worldwide problem. Additionally, the risk of rib fracture significantly increases with age with confounding deleterious effects. Studies on elderly ribs are not uncommon, however very few studies exist which explore the mechanical properties and behavior of immature human bone, especially of ribs. Previous research identifying rib properties has provided useful information for numerous applications. However, no study has included a comprehensive sample of all ages (pediatric through elderly) in which ribs are tested in the same repeatable set-up. The goal of this study is to characterize differences in rib structural response across the age spectrum. One-hundred forty excised ribs from 70 individuals were experimentally tested in a custom-built pendulum fixture simulating a dynamic frontal impact. The sample includes individuals of ages ranging from six to 99 years old and includes 58 males and 12 females. Reported data include fracture location, displacement in the X and Y directions at fracture (δX, δY), force at fracture (FX), and linear structural stiffness (K). δX and K exhibit a statistically significant linear decrease with age (p<0.0001). FX reveals a trend in which a peak is reached in the young adult years (25-40). Detailed mechanical property data, as provided here, will prove useful for application in computational modeling efforts, which are vital to help prevent injury and to understand injury mechanisms from childhood through old age.


Bone | 2015

Regional variation of bone tissue properties at the human mandibular condyle.

Do-Gyoon Kim; Yong-Hoon Jeong; Erin Kosel; Amanda M. Agnew; David W. McComb; Kyle Bodnyk; Richard T. Hart; Min Kyung Kim; Sang Yeun Han; William M. Johnston

The temporomandibular joint (TMJ) bears different types of static and dynamic loading during occlusion and mastication. As such, characteristics of mandibular condylar bone tissue play an important role in determining the mechanical stability of the TMJ under the macro-level loading. Thus, the objective of this study was to examine regional variation of the elastic, plastic, and viscoelastic mechanical properties of human mandibular condylar bone tissue using nanoindentation. Cortical and trabecular bone were dissected from mandibular condyles of human cadavers (9 males, 54-96 years). These specimens were scanned using microcomputed tomography to obtain bone tissue mineral distribution. Then, nanoindentation was conducted on the surface of the same specimens in hydration. Plastic hardness (H) at a peak load, viscoelastic creep (Creep/Pmax), viscosity (η), and tangent delta (tan δ) during a 30 second hold period, and elastic modulus (E) during unloading were obtained by a cycle of indentation at the same site of bone tissue. The tissue mineral and nanoindentation parameters were analyzed for the periosteal and endosteal cortex, and trabecular bone regions of the mandibular condyle. The more mineralized periosteal cortex had higher mean values of elastic modulus, plastic hardness, and viscosity but lower viscoelastic creep and tan δ than the less mineralized trabecular bone of the mandibular condyle. These characteristics of bone tissue suggest that the periosteal cortex tissue may have more effective properties to resist elastic, plastic, and viscoelastic deformation under static loading, and the trabecular bone tissue to absorb and dissipate time-dependent viscoelastic loading energy at the TMJ during static occlusion and dynamic mastication.


American Journal of Physical Anthropology | 2012

Brief communication: The effects of disuse on the mechanical properties of bone: What unloading tells us about the adaptive nature of skeletal tissue

Stephen H. Schlecht; Deborrah C. Pinto; Amanda M. Agnew; Sam D. Stout

The intricate link between load environment and skeletal health is exemplified by the severe osteopenia that accompanies prolonged periods of immobilization, frequently referred to as disuse osteoporosis. Investigating the effects disuse has on the structural properties of bone provides a unique opportunity to better understand how mechanical loads influence the adaptation and maintenance of skeletal tissue. Here, we report results from an examination of multiple indicators of bone metabolism (e.g., mean osteon density, mean osteon size, bone mass, and bone area distribution) within the major long bones of individuals with distinct activity level differences. Results are based on a sample comprising two subjects that suffered from long-term quadriplegia and 28 individuals of comparable age that had full limb mobility. Although limited in sample size, our findings suggest bones associated with long-term disuse have lower osteon densities and larger osteon areas compared to individuals of normal mobility, reflecting dramatically lower remodeling rates potentially related to reduced strain levels. Moreover, immobilized skeletal elements demonstrate a reduced percentage of cortical area present resulting from endosteal resorption. Differences between mobility groups in the percentage of cortical area present and bone distribution of all skeletal elements, suggests bone modeling activity is negligible in the unloaded adult skeleton. Additional histomorphometric comparisons reveal potential intraskeletal differences in bone turnover rates suggesting remodeling rates are highest within the humeri and femora. Addition of more immobilized individuals in the future will allow for quantitative statistical analyses and greater consideration of human variation within and between individuals.


American Journal of Physical Anthropology | 2012

Technical note: The use of geographical information systems software for the spatial analysis of bone microstructure.

David C. Rose; Amanda M. Agnew; Timothy P. Gocha; Sam D. Stout; Julie S. Field

Geographic information systems (GIS) software is typically used for analyzing geographically distributed data, allowing users to annotate points or areas on a map and attach data for spatial analyses. While traditional GIS-based research involves geo-referenced data (points tied to geographic locations), the use of this technology has other constructive applications for physical anthropologists. The use of GIS software for the study of bone histology offers a novel opportunity to analyze the distribution of bone nano- and microstructures, relative to macrostructure and in comparison to other variables of interest, such as biomechanical loading history. This approach allows for the examination of characteristics of single histological features while considering their role at the macroscopic level. Such research has immediate promise in examining the load history of bone by surveying the functional relationship between collagen fiber orientation (CFO) and strain mode. The diversity of GIS applications that may be utilized in bone histology research is just beginning to be explored. The goal of this study is to introduce a reliable methodology for such investigation and our objective is to quantify the heterogeneity of bone microstructure over an entire cross-section of bone using ArcGIS v 9.3 (ESRI). This was accomplished by identifying the distribution of remodeling units in a human metatarsal relative to bending axes. One biomechanical hypothesis suggests that CFO, manifested by patterns of birefringence, is indicative of mode of strain during formation. This study demonstrates that GIS can be used to investigate, describe, and compare such patterns through histological mapping.


Journal of Anatomy | 2016

Spatial variation in osteon population density at the human femoral midshaft: histomorphometric adaptations to habitual load environment

Timothy P. Gocha; Amanda M. Agnew

Intracortical remodeling, and the osteons it produces, is one aspect of the bone microstructure that is influenced by and, in turn, can influence its mechanical properties. Previous research examining the spatial distribution of intracortical remodeling density across the femoral midshaft has been limited to either considering only small regions of the cortex or, when looking at the entirety of the cortex, considering only a single individual. This study examined the spatial distribution of all remodeling events (intact osteons, fragmentary osteons, and resorptive bays) across the entirety of the femoral midshaft in a sample of 30 modern cadaveric donors. The sample consisted of 15 males and 15 females, aged 21–97 years at time of death. Using geographic information systems software, the femoral cortex was subdivided radially into thirds and circumferentially into octants, and the spatial location of all remodeling events was marked. Density maps and calculation of osteon population density in cortical regions of interest revealed that remodeling density is typically highest in the periosteal third of the bone, particularly in the lateral and anterolateral regions of the cortex. Due to modeling drift, this area of the midshaft femur has some of the youngest primary tissue, which consequently reveals that the lateral and anterolateral regions of the femoral midshaft have higher remodeling rates than elsewhere in the cortex. This is likely the result of tension/shear forces and/or greater strain magnitudes acting upon the anterolateral femur, which results in a greater amount of microdamage in need of repair than is seen in the medial and posterior regions of the femoral midshaft, which are more subject to compressive forces and/or lesser strain magnitudes.


Bone reports | 2016

Intraskeletal variation in human cortical osteocyte lacunar density: Implications for bone quality assessment

Randee L Hunter; Amanda M. Agnew

Osteocytes and their lacunocanalicular network have been identified as the regulator of bone quality and function by exerting extensive influence over metabolic processes, mechanical adaptation, and mineral homeostasis. Recent research has shown that osteocyte apoptosis leads to a decrease in bone quality and increase in bone fragility mediated through its effects on remodeling. The purpose of this study is to investigate variation in cortical bone osteocyte lacunar density with respect to major factors including sex, age, and intracortical porosity to establish both regional and systemic trends. Samples from the midshaft femur, midshaft rib and distal one-third diaphysis of the radius were recovered from 30 modern cadaveric individuals (15 males and 15 females) ranging from 49 to 100 years old. Thick ground undecalcified histological (80 μm) cross-sections were made and imaged under bright field microscopy. Osteocyte lacunar density (Ot.Lc.N/B.Ar) and intracortical porosity (%Po.Ar) were quantified. No significant sex differences in Ot.Lc.N/B.Ar or %Po.Ar were found in any element. Linear regressions demonstrated a significant decrease in osteocyte lacunar density (Ot.Lc.N/B.Ar) and increase in intracortical porosity (%Po.Ar) with age for the sex-pooled sample in the femur (R2 = 0.208, 0.297 respectively) and radius (R2 = 0.108, 0.545 respectively). Age was unable to significantly predict osteocyte lacunar density or intracortical porosity in the rib (R2 = 0.058, 0.114 respectively). Comparisons of regression coefficients demonstrated a systemic trend in the decrease in osteocyte lacunar density (Ot.Lc.N/B.Ar) and increase in intracortical porosity (%Po.Ar) with age. In each element, intracortical porosity was significantly negatively correlated with lacunar density for which the radius demonstrated the strongest relationship (r = − 0.746). Using pore number (Po.N) as a proxy for available vascularity to support the osteocyte population, Po.N was able to predict 61.8% of variation in osteocyte lacunar number (Ot.Lc.N) in the rib. The femur and radius also demonstrated significant relationships between these variables (R2 = 0.560 and 0.397 respectively). The results from this study indicate that although the femur, radius and rib may be experiencing systemically influenced declines in osteocyte lacunar density, there may be differential effects at each anatomical site potentially due to age related changes in mechanical loading. With decreasing osteocyte lacunar density in each element, intracortical porosity increased with likely direct impacts on gross bone strength. This study provides a foundation upon which to build interpretations of osteocyte lacunar density values and their effect on differential fracture risk for aging individuals.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2016

Examination of Factors Potentially Influencing Osteon Size in the Human Rib

Victoria M. Dominguez; Amanda M. Agnew

Previous research demonstrates that the size of secondary osteons varies considerably between individuals, though what factors act in the delineation of osteon size remain uncertain. This study explores the influence of age, sex, percent cortical area (%Ct.Ar), percent cortical porosity (%Po.Ar), and loading environment on osteon area (On.Ar) in human ribs. The sample consisted of midshaft 6th ribs from 80 individuals, 6–94 years of age. T‐tests demonstrated no significant differences in On.Ar between the sexes (P=0.383). Age showed a significant correlation with both %Ct.Ar and %Po.Ar, so a hierarchical regression model was used to control for the effects of age on the other variables. Results indicate that age is the most significant factor of those tested in this study (P=0.004), with %Ct.Ar playing a much smaller but still significant role (P=0.014), while %Po.Ar had no significant influence on On.Ar (P=0.443). Age demonstrates an inverse relationship with On.Ar, while %Ct.Ar has a direct relationship with On.Ar. Significant differences in On.Ar between the pleural and cutaneous cortices are attributed to variation in %Ct.Ar of each cortex. Therefore, age and %Ct.Ar account for the majority of osteon size variability in this study, although it is likely genetics play an important role as well. Understanding the biological mechanisms that act in remodeling and determine osteon size is essential for accurately addressing and interpreting histological findings, work that is invaluable in its implications for bone biology. Anat Rec, 299:313–324, 2016.

Collaboration


Dive into the Amanda M. Agnew's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Moorhouse

National Highway Traffic Safety Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge