Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda M. Stockton is active.

Publication


Featured researches published by Amanda M. Stockton.


Analytical Chemistry | 2009

Enhanced Amine and Amino Acid Analysis Using Pacific Blue and the Mars Organic Analyzer Microchip Capillary Electrophoresis System

Thomas N. Chiesl; Wai K. Chu; Amanda M. Stockton; Xenia Amashukeli; Frank J. Grunthaner; Richard A. Mathies

The fluorescent amine reactive probe Pacific Blue succinimidyl ester (PB) is used for the detection of trace amounts of amines and amino acids by microchip capillary electrophoresis on the Mars Organic Analyzer (MOA). The spectral and chemical properties of PB provide a 200-fold increase in sensitivity and improved resolution compared to fluorescamine derivatization. With the use of cross injection and PB labeling, the MOA detected amino acids at concentrations as low as 75 pM (sub-parts-per-trillion). Micellar electrokinetic chromatography (MEKC) which separates PB-labeled amino acids by their hydrophobicity is also demonstrated. The optimized MEKC conditions (45 mM CHAPSO, pH 6 at 5 degrees C) effectively separated amines and 25 amino acids with enantiomeric resolution of alanine, serine, and citrulline. Samples from the Yungay Hills region in the Atacama Desert, Chile, and from the Murchison meteorite are successfully analyzed using both techniques, and amino acids are found in the parts-per-billion range. Abiotic amino acids such as beta-alanine and epsilon-aminocaprioc acid are detected along with several neutral and acidic amino acids in the Murchison sample. The Atacama Desert sample is found to contain homochiral L-alanine and L-serine indicating the presence of extant or recently extinct life.


Analytical Chemistry | 2010

Multichannel Capillary Electrophoresis Microdevice and Instrumentation for in Situ Planetary Analysis of Organic Molecules and Biomarkers

Merwan Benhabib; Thomas N. Chiesl; Amanda M. Stockton; James R. Scherer; Richard A. Mathies

The Multichannel Mars Organic Analyzer (McMOA), a portable instrument for the sensitive microchip capillary electrophoresis (CE) analysis of organic compounds such as amino acid biomarkers and polycyclic aromatic hydrocarbons (PAHs), is developed. The instrument uses a four-layer microchip, containing eight CE analysis systems integrated with a microfluidic network for autonomous fluidic processing. The McMOA has improved optical components that integrate 405 nm laser excitation with a linear-scanning optical system capable of multichannel real-time fluorescence spectroscopic analysis. The instrumental limit of detection is 6 pM (glycine). Microfluidic programs are executed to perform the automated sequential analysis of an amine-containing sample in each channel as well as eight consecutive analyses of alternating samples on the same channel, demonstrating less than 1% cross-contamination. The McMOA is used to identify the unique fluorescence spectra of nine components in a PAH standard and then applied to the analysis of a sediment sample from Lake Erie. The presence of benzo[a]pyrene and perylene in this sample is confirmed, and a peak coeluting with anthanthrene is disqualified based on spectral analysis. The McMOA exploits lab-on-a-chip technologies to fully integrate complex autonomous operations demonstrating the facile engineering of microchip-CE platforms for the analysis of a wide variety of organic compounds in planetary exploration.


Analytical Chemistry | 2009

Polycyclic aromatic hydrocarbon analysis with the Mars organic analyzer microchip capillary electrophoresis system.

Amanda M. Stockton; Thomas N. Chiesl; James R. Scherer; Richard A. Mathies

The Mars Organic Analyzer (MOA), a portable microchip capillary electrophoresis (CE) instrument developed for sensitive amino acid analysis on Mars, is used to analyze laboratory standards and real-world samples for polycyclic aromatic hydrocarbons (PAHs). The microfabricated CE separation and analysis method for these hydrophobic analytes is optimized, resulting in a separation buffer consisting of 10 mM sulfobutylether-beta-cyclodextrin, 40 mM methyl-beta-cyclodextrin, 5 mM carbonate buffer at pH 10, 5 degrees C. A PAH standard consisting of seven PAHs found in extraterrestrial matter and two terrestrial PAHs is successfully baseline separated. Limits of detection for the components of the standard ranged from 2000 ppm to 6 ppb. Analysis of an environmental contamination standard from Lake Erie and of a hydrothermal vent chimney sample from the Guaymas Basin agreed with published composition. A Martian analogue sample from the Yungay Hills region of the Atacama Desert was analyzed and found to contain 9,10-diphenylanthracene, anthracene, anthanthrene, fluoranthene, perylene, and benzo[ghi]fluoranthene at ppm levels. This work establishes the viability of the MOA for detecting and analyzing PAHs in in situ planetary exploration.


Analytical Chemistry | 2011

Toward Total Automation of Microfluidics for Extraterrestial In Situ Analysis

Maria F. Mora; Frank Greer; Amanda M. Stockton; Sherrisse Bryant; Peter A. Willis

Despite multiple orbiter and landed missions to extraterrestrial bodies in the solar system, including Mars and Titan, we still know relatively little about the detailed chemical composition and quantity of organics and biomolecules in those bodies. For chemical analysis on astrobiologically relevant targets such as Mars, Europa, Titan, and Enceladus, instrumentation should be extremely sensitive and capable of analyzing a broad range of organic molecules. Microchip capillary electrophoresis (μCE) with laser-induced fluorescence (LIF) detection provides this required sensitivity and targets a wide range of relevant markers but, to date, has lacked the necessary degree of automation for spaceflight applications. Here we describe a fully integrated microfluidic device capable of performing automated end-to-end analyses of amino acids by μCE with LIF detection. The device integrates an array of pneumatically actuated valves and pumps for autonomous fluidic routing with an electrophoretic channel. Operation of the device, including manipulation of liquids for sample pretreatment and electrophoretic analysis, was performed exclusively via computer control. The device was validated by mixing of laboratory standards and labeling of amino acids with Pacific Blue succinimidyl ester followed by electrophoretic analysis. To our knowledge, this is the first demonstration of completely automated end-to-end μCE analyses on a single, fully integrated microfluidic device.


Analytical Chemistry | 2013

Universal Microfluidic Automaton for Autonomous Sample Processing: Application to the Mars Organic Analyzer

Jungkyu Kim; Erik C. Jensen; Amanda M. Stockton; Richard A. Mathies

A fully integrated multilayer microfluidic chemical analyzer for automated sample processing and labeling, as well as analysis using capillary zone electrophoresis is developed and characterized. Using lifting gate microfluidic control valve technology, a microfluidic automaton consisting of a two-dimensional microvalve cellular array is fabricated with soft lithography in a format that enables facile integration with a microfluidic capillary electrophoresis device. The programmable sample processor performs precise mixing, metering, and routing operations that can be combined to achieve automation of complex and diverse assay protocols. Sample labeling protocols for amino acid, aldehyde/ketone and carboxylic acid analysis are performed automatically followed by automated transfer and analysis by the integrated microfluidic capillary electrophoresis chip. Equivalent performance to off-chip sample processing is demonstrated for each compound class; the automated analysis resulted in a limit of detection of ~16 nM for amino acids. Our microfluidic automaton provides a fully automated, portable microfluidic analysis system capable of autonomous analysis of diverse compound classes in challenging environments.


Electrophoresis | 2012

Microchip capillary electrophoresis instrumentation for in situ analysis in the search for extraterrestrial life.

Maria F. Mora; Amanda M. Stockton; Peter A. Willis

The search for signs of life on extraterrestrial planetary bodies is among NASAs top priorities in Solar System exploration. The associated pursuit of organics and biomolecules as evidence of past or present life demands in situ investigations of planetary bodies for which sample return missions are neither practical nor affordable. These in situ studies require instrumentation capable of sensitive chemical analyses of complex mixtures including a broad range of organic molecules. Instrumentation must also be capable of autonomous operation aboard a robotically controlled vehicle that collects data and transmits it back to Earth. Microchip capillary electrophoresis (μCE) coupled to laser‐induced fluorescence (LIF) detection provides this required sensitivity and targets a wide range of relevant organics while offering low mass, volume, and power requirements. Thus, this technology would be ideally suited for in situ studies of astrobiology targets, such as Mars, Europa, Enceladus, and Titan. In this review, we introduce the characteristics of these planetary bodies that make them compelling destinations for extraterrestrial astrobiological studies, and the principal groups of organics of interest associated with each. And although the technology we describe here was first developed specifically for proposed studies of Mars, by summarizing its evolution over the past decade, we demonstrate how μCE‐LIF instrumentation has become an ideal candidate for missions of exploration to all of these nearby worlds in our Solar System.


Analytical Chemistry | 2013

Low-Temperature Microchip Nonaqueous Capillary Electrophoresis of Aliphatic Primary Amines: Applications to Titan Chemistry

Morgan L. Cable; Amanda M. Stockton; Maria F. Mora; Peter A. Willis

We demonstrate microchip nonaqueous capillary electrophoresis (μNACE) analysis of primary aliphatic amines (C1-C18) in ethanol down to -20 °C as a first step in adapting microfluidic protocols for in situ analysis on Titan. To our knowledge, this is the first report of a nonaqueous separation at -20 °C on-chip. Limits of detection (LODs) ranged from 1.0 nM to 2.6 nM, and we identified several primary amines ranging in length from C2 to C16 in Titan aerosol analogue (tholin) samples; new amines were also detected in a tholin sample exposed to oxygen and liquid water. This preliminary work validates the sensitivity and efficacy of microfluidic chemical analysis of complex organics with relevance to Titan aerosols and surface deposits.


Astrobiology | 2009

Capillary Electrophoresis Analysis of Organic Amines and Amino Acids in Saline and Acidic Samples Using the Mars Organic Analyzer

Amanda M. Stockton; Thomas N. Chiesl; Tim K. Lowenstein; Xenia Amashukeli; Frank J. Grunthaner; Richard A. Mathies

The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.


Astrobiology | 2011

Analysis of Carbonaceous Biomarkers with the Mars Organic Analyzer Microchip Capillary Electrophoresis System: Carboxylic Acids

Amanda M. Stockton; Caroline Chandra Tjin; Thomas N. Chiesl; Richard A. Mathies

The oxidizing surface chemistry on Mars argues that any comprehensive search for organic compounds indicative of life requires methods to analyze higher oxidation states of carbon with very low limits of detection. To address this goal, microchip capillary electrophoresis (μCE) methods were developed for analysis of carboxylic acids with the Mars Organic Analyzer (MOA). Fluorescent derivatization was achieved by activation with the water soluble 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) followed by reaction with Cascade Blue hydrazide in 30 mM borate, pH 3. A standard containing 12 carboxylic acids found in terrestrial life was successfully labeled and separated in 30 mM borate at pH 9.5, 20 °C by using the MOA CE system. Limits of detection were 5-10 nM for aliphatic monoacids, 20 nM for malic acid (diacid), and 230 nM for citric acid (triacid). Polyacid benzene derivatives containing 2, 3, 4, and 6 carboxyl groups were also analyzed. In particular, mellitic acid was successfully labeled and analyzed with a limit of detection of 300 nM (5 ppb). Analyses of carboxylic acids sampled from a lava tube cave and a hydrothermal area demonstrated the versatility and robustness of our method. This work establishes that the MOA can be used for sensitive analyses of a wide range of carboxylic acids in the search for extraterrestrial organic molecules.


Electrophoresis | 2010

Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: Aldehydes and ketones

Amanda M. Stockton; Caroline Chandra Tjin; Grace L. Huang; Merwan Benhabib; Thomas N. Chiesl; Richard A. Mathies

A microchip CE method is developed for the analysis of two oxidized forms of carbon, aldehydes and ketones, with the Mars Organic Analyzer (MOA). Fluorescent derivitization is achieved in ∼15 min by hydrazone formation with Cascade Blue hydrazide in 30 mM borate pH 5–6. The microchip CE separation and analysis method is optimized via separation in 30 mM borate buffer, pH 9.5, at 20°C. A carbonyl standard consisting of ten aldehydes and ketones found in extraterrestrial matter is successfully separated; the resulting LOD depends on the reactivity of the compound and range from 70 pM for formaldehyde to 2 μM for benzophenone. To explore the utility of this method for analyzing complex samples, analyses of several fermented beverages are conducted, identifying ten aldehydes and ketones ranging from 30 nM to 5 mM. A Martian regolith simulant sample, consisting of a basalt matrix spiked with soluble ions and acetone, is designed and analyzed, but acetone is found to have a limited detectable lifetime under simulant Martian conditions. This work establishes the capability of the MOA for studying aldehydes and ketones, a critical class of oxidized organic molecules of interest in planetary and in terrestrial environmental and health studies.

Collaboration


Dive into the Amanda M. Stockton's collaboration.

Top Co-Authors

Avatar

Peter A. Willis

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Maria F. Mora

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morgan L. Cable

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik C. Jensen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xenia Amashukeli

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge