Amanda M. Thomas
University of Oregon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amanda M. Thomas.
Nature | 2009
Amanda M. Thomas; Robert M. Nadeau; Roland Bürgmann
Since its initial discovery nearly a decade ago, non-volcanic tremor has provided information about a region of the Earth that was previously thought incapable of generating seismic radiation. A thorough explanation of the geologic process responsible for tremor generation has, however, yet to be determined. Owing to their location at the plate interface, temporal correlation with geodetically measured slow-slip events and dominant shear wave energy, tremor observations in southwest Japan have been interpreted as a superposition of many low-frequency earthquakes that represent slip on a fault surface. Fluids may also be fundamental to the failure process in subduction zone environments, as teleseismic and tidal modulation of tremor in Cascadia and Japan and high Poisson ratios in both source regions are indicative of pressurized pore fluids. Here we identify a robust correlation between extremely small, tidally induced shear stress parallel to the San Andreas fault and non-volcanic tremor activity near Parkfield, California. We suggest that this tremor represents shear failure on a critically stressed fault in the presence of near-lithostatic pore pressure. There are a number of similarities between tremor in subduction zone environments, such as Cascadia and Japan, and tremor on the deep San Andreas transform, suggesting that the results presented here may also be applicable in other tectonic settings.
Nature | 2012
Gregory C. McLaskey; Amanda M. Thomas; Steven D. Glaser; Robert M. Nadeau
Faults strengthen or heal with time in stationary contact, and this healing may be an essential ingredient for the generation of earthquakes. In the laboratory, healing is thought to be the result of thermally activated mechanisms that weld together micrometre-sized asperity contacts on the fault surface, but the relationship between laboratory measures of fault healing and the seismically observable properties of earthquakes is at present not well defined. Here we report on laboratory experiments and seismological observations that show how the spectral properties of earthquakes vary as a function of fault healing time. In the laboratory, we find that increased healing causes a disproportionately large amount of high-frequency seismic radiation to be produced during fault rupture. We observe a similar connection between earthquake spectra and recurrence time for repeating earthquake sequences on natural faults. Healing rates depend on pressure, temperature and mineralogy, so the connection between seismicity and healing may help to explain recent observations of large megathrust earthquakes which indicate that energetic, high-frequency seismic radiation originates from locations that are distinct from the geodetically inferred locations of large-amplitude fault slip.
Journal of Geophysical Research | 2013
Nicholas M. Beeler; Amanda M. Thomas; Roland Bürgmann; David R. Shelly
Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor (NVT) on the San Andreas fault in central California show strong sensitivity to shear stress induced by the daily tidal cycle. LFEs occur at all levels of the tidal shear stress and are in phase with the very small, ~400 Pa, stress amplitude. To quantitatively explain the correlation, we use a model from the existing literature that assumes the LFE sources are small, persistent regions that repeatedly fail during shear of a much larger scale, otherwise aseismically creeping fault zone. The LFE source patches see tectonic loading, creep of the surrounding fault which may be modulated by the tidal stress, and direct tidal loading. If the patches are small relative to the surrounding creeping fault then the stressing is dominated by fault creep, and if patch failure occurs at a threshold stress, then the resulting seismicity rate is proportional to the fault creep rate or fault zone strain rate. Using the seismicity rate as a proxy for strain rate and the tidal shear stress, we fit the data with possible fault rheologies that produce creep in laboratory experiments at temperatures of 400 to 600°C appropriate for the LFE source depth. The rheological properties of rock-forming minerals for dislocation creep and dislocation glide are not consistent with the observed fault creep because strong correlation between small stress perturbations and strain rate requires perturbation on the order of the ambient stress. The observed tidal modulation restricts ambient stress to be at most a few kilopascal, much lower than rock strength. A purely rate dependent friction is consistent with the observations only if the product of the friction rate dependence and effective normal stress is ~ 0.5 kPa. Extrapolating the friction rate strengthening dependence of phyllosilicates (talc) to depth would require the effective normal stress to be ~50 kPa, implying pore pressure is lithostatic. If the LFE source is on the order of tens of meters, as required by the model, rate-weakening friction rate dependence (e.g., olivine) at 400 to 600°C requires that the minimum effective pressure at the LFE source is ~ 2.5 MPa.
Journal of Geophysical Research | 2015
A. A. Royer; Amanda M. Thomas; Michael G. Bostock
We analyze the influence of Earth and ocean tides on the triggering of low-frequency earthquakes (LFEs) in northern Cascadia using three LFE catalogs for southern Vancouver Island and Washington state from episodic tremor and slip events between 2003 and 2013. Sensitivities of LFE families to tidally induced fault normal stress, updip shear stress (UDSS), and corresponding time derivatives are computed and their geographic variability is mapped. We find localized areas showing higher sensitivity to UDSS than their surroundings, suggesting that tidal sensitivity depends on laterally heterogeneous physical properties such as variable pore fluid pressures and frictional properties along the plate interface. We observe that sensitivity of LFEs to UDSS rises dramatically from near zero on the first day of strong activity to a maximum ∼4 days later. In addition, the peak LFE rate transitions from a correlation with peak tidal shear stress rate to a correlation with peak tidal shear stress through large slow slip events. We identify 64 Rapid-Tremor-Reversals (RTRs) that start a few days after the main slip front. The RTRs have an average stress drop of ∼0.8 kPa and a majority (72%) occurs during periods of large positive UDSS. The combined observations imply that RTRs play an important role in slow slip processes and that modulation of creep rate due to tidal stress and tidal triggering of secondary events are jointly responsible for the observed tidal sensitivity.
Science | 2016
Quentin Bletery; Amanda M. Thomas; Alan W. Rempel; Leif Karlstrom; Anthony Sladen; Louis De Barros
Mega-earthquakes go the flat way Megathrust faults in subduction zones cause large and damaging earthquakes. Bletery et al. argue that certain geometric features of the subduction zones relate to earthquake size. The key parameter is the curvature of the megathrust. Larger earthquakes occur where the subducting slab is flatter, providing a rough metric for estimating where mega-earthquakes may occur in the future. Science, this issue p. 1027 Large earthquakes in subduction zones are most likely to occur where the subducting slab is relatively flat. The 2004 Sumatra-Andaman and 2011 Tohoku-Oki earthquakes highlighted gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution: A fast convergence rate and young buoyant lithosphere are not required to produce mega-earthquakes. We calculated the curvature along the major subduction zones of the world, showing that mega-earthquakes preferentially rupture flat (low-curvature) interfaces. A simplified analytic model demonstrates that heterogeneity in shear strength increases with curvature. Shear strength on flat megathrusts is more homogeneous, and hence more likely to be exceeded simultaneously over large areas, than on highly curved faults.
Bulletin of the Seismological Society of America | 2014
Clifford H. Thurber; Xiangfang Zeng; Amanda M. Thomas; Pascal Audet
Abstract We apply phase‐weighted stacking (PWS) to the analysis of low‐frequency earthquakes (LFEs) in the Parkfield, California, region and central Cascadia. The technique uses the coherence of the instantaneous phase among the stacked signals to enhance the signal‐to‐noise ratio (SNR) of the stack. We find that for picking LFE arrivals for the Parkfield, California, region and for LFE template formation in central Cascadia, PWS is extremely effective. For LFEs in the Parkfield, California, region, PWS yields many more usable phases than standard linear stacking; and, for LFE detection in Cascadia, PWS produces templates with much higher SNR than linear stacking.
Geophysical Research Letters | 2016
Amanda M. Thomas; Gregory C. Beroza; David R. Shelly
Low-frequency earthquakes (LFEs) are small repeating earthquakes that occur in conjunction with deep slow slip. Like typical earthquakes, LFEs are thought to represent shear slip on crustal faults, but when compared to earthquakes of the same magnitude, LFEs are depleted in high-frequency content and have lower corner frequencies, implying longer duration. Here we exploit this difference to estimate the duration of LFEs on the deep San Andreas Fault (SAF). We find that the M~ 1 LFEs have typical durations of ~0.2 s. Using the annual slip rate of the deep SAF and the average number of LFEs per year, we estimate average LFE slip rates of ~0.24mm/s. When combined with the LFE magnitude, this number implies a stress drop of ~10 Pa, 2 to 3 orders of magnitude lower than ordinary earthquakes, and a rupture velocity of 0.7 km/s, 20% of the shear wave speed. Typical earthquakes are thought to have rupture velocities of ~80–90% of the shear wave speed. Together, the slow rupture velocity, low stress drops, and slow slip velocity explain why LFEs are depleted in high-frequency content relative to ordinary earthquakes and suggest that LFE sources represent areas capable of relatively higher slip speed in deep fault zones. Additionally, changes in rheology may not be required to explain both LFEs and slow slip; the same process that governs the slip speed during slow earthquakes may also limit the rupture velocity of LFEs.
Journal of Geophysical Research | 2015
C. Kyriakopoulos; Andrew V. Newman; Amanda M. Thomas; Melissa Moore‐Driskell; Grant T. Farmer
We provide a detailed, seismically defined three-dimensional model for the subducting plate interface along the Middle America Trench between Northern Nicaragua through to Southern Costa Rica. The model uses data from a weighted catalog of about 30,000 earthquake hypocenters compiled from nine catalogs to constrain the interface through a process we term the “Maximum Seismicity Method”. The method determines the average position of the largest cluster of microseismicity beneath an a priori functional surface above the interface. This technique is applied to all seismicity above 40 km depth, the approximate intersection of the hanging-wall Mohorovicic discontinuity, where seismicity likely lies along the plate interface. Below this depth, an envelope above 90% of seismicity approximates the slab surface. Because of station proximity to the interface, this model provides highest precision along the interface beneath the Nicoya Peninsula of Costa Rica, an area where marked geometric changes coincide with crustal transitions and topography observed seaward of the trench. The new interface is useful for a number of geophysical studies that aim to understand subduction zone earthquake behavior, geodynamic and tectonic development of convergent plate boundaries.
Geophysical Research Letters | 2015
Alexandre P. Plourde; Michael G. Bostock; Pascal Audet; Amanda M. Thomas
We use seismic waveform data from the Mendocino Experiment to detect low-frequency earthquakes (LFEs) beneath Northern California during the April 2008 tremor-and-slip episode. In southern Cascadia, 59 templates were generated using iterative network cross correlation and stacking and grouped into 34 distinct LFE families. The main front of tremor epicenters migrates along strike at 9 km d−1; we also find one instance of rapid tremor reversal, observed to propagate in the opposite direction at 10–20 km h−1. As in other regions of Cascadia, LFE hypocenters from this study lie several kilometers above a recent plate interface model. South of Cascadia, LFEs were discovered on the Maacama and Bucknell Creek faults. The Bucknell Creek Fault may be the youngest fault yet observed to host LFEs. These fault zones also host shallow earthquake swarms with repeating events that are distinct from LFEs in their spectral and recurrence characteristics.
Geochemistry Geophysics Geosystems | 2016
Jessica C. Hawthorne; Michael G. Bostock; A. A. Royer; Amanda M. Thomas
During large slow slip events, tremor sometimes propagates in the reverse along-strike direction for a few hours, at speeds 10 to 40 times faster than the forward propagation. We examine the aseismic slip that underlies this rapidly propagating tremor. We use PBO (Plate Boundary Observatory) borehole strainmeter data to search for variations in the slow slip moment rate during 35 rapid tremor reversals (RTRs) that occurred beneath Vancouver Island. The strain records reveal that, on average, the strain rate increases by about 100% ( ±30%) during RTRs. Given the Greens functions expected for slip in the RTR locations, these strain rate increases imply 50 to 130% increases in the aseismic moment rate. The median moment released per RTR is between 8 and 21% of the daily slow slip moment, equivalent to that of a MW 5.0 to 5.1 earthquake. By combining the RTR moments with the spatial extents suggested by tremor, we estimate that a typical RTR has peak slip of roughly one-sixth of the peak slip in the main slow slip event, near-front slip rate of a few to ten times the main front slip rate, stress drop around half the main event stress drop, and strain energy release rate around one-tenth that of the main front. Our observations support a picture of RTRs as aseismic subevents with high slip rates but modest strain energy release. RTRs appear to contribute to but not dominate the overall slow slip moment, though they may accommodate most of the slip in certain locations.