Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda R. Bolbecker is active.

Publication


Featured researches published by Amanda R. Bolbecker.


Journal of Abnormal Psychology | 2011

Temporal Discounting of Rewards in Patients With Bipolar Disorder and Schizophrenia

Woo-Young Ahn; Olga Rass; Daniel J. Fridberg; Anthony J. Bishara; Jennifer K. Forsyth; Alan Breier; Jerome R. Busemeyer; William P. Hetrick; Amanda R. Bolbecker; Brian F. O'Donnell

Patients with bipolar disorder (BD) and schizophrenia (SZ) often show decision-making deficits in everyday circumstances. A failure to appropriately weigh immediate versus future consequences of choices may contribute to these deficits. We used the delay discounting task in individuals with BD or SZ to investigate their temporal decision making. Twenty-two individuals with BD, 21 individuals with SZ, and 30 healthy individuals completed the delay discounting task along with neuropsychological measures of working memory and cognitive function. Both BD and SZ groups discounted delayed rewards more steeply than did the healthy group even after controlling for current substance use, age, gender, and employment. Hierarchical multiple regression analyses showed that discounting rate was associated with both diagnostic group and working memory or intelligence scores. In each group, working memory or intelligence scores negatively correlated with discounting rate. The results suggest that (a) both BD and SZ groups value smaller, immediate rewards more than larger, delayed rewards compared with the healthy group and (b) working memory or intelligence is related to temporal decision making in individuals with BD or SZ as well as in healthy individuals.


Journal of Psychiatric Research | 2013

Resting State EEG Power and Coherence Abnormalities in Bipolar Disorder and Schizophrenia

Julia W.Y. Kam; Amanda R. Bolbecker; Brian F. O'Donnell; William P. Hetrick; Colleen A. Brenner

Resting state electroencephalogram (EEG) abnormalities in schizophrenia and bipolar disorder patients suggest alterations in neural oscillatory activity. However, few studies directly compare these anomalies between patient groups, and none have examined EEG coherence. Therefore, this study investigated whether these electrophysiological characteristics differentiate clinical populations from one another, and from non-psychiatric controls. To address this question, resting EEG power and coherence were assessed in 76 bipolar patients (BP), 132 schizophrenia patients (SZ), and 136 non-psychiatric controls (NC). We conducted separate repeated-measures ANOVAs to examine group differences within seven frequency bands across several brain regions. BP showed significantly greater power relative to SZ at higher frequencies including Beta and Gamma across all regions. In terms of intra-hemispheric coherence, while SZ generally exhibited higher coherence at Delta compared to NC and BP, both SZ and BP showed higher coherence at Alpha1 and Alpha2. In contrast, BP and HC showed higher coherence within hemispheres compared to SZ at Beta 1. In terms of inter-hemispheric coherence, SZ displayed higher coherence compared to NC at temporal sites at both Alpha1 and Alpha2. Taken together, BP exhibited increased high frequency power with few disruptions in neural synchronization. In contrast, SZ generally exhibited enhanced synchronization within and across hemispheres. These findings suggest that resting EEG can be a sensitive measure for differentiating between clinical disorders.


NeuroImage: Clinical | 2013

Disturbed resting state EEG synchronization in bipolar disorder: A graph-theoretic analysis.

Dae-Jin Kim; Amanda R. Bolbecker; Josselyn M. Howell; Olga Rass; Olaf Sporns; William P. Hetrick; Alan Breier; Brian F. O'Donnell

Disruption of functional connectivity may be a key feature of bipolar disorder (BD) which reflects disturbances of synchronization and oscillations within brain networks. We investigated whether the resting electroencephalogram (EEG) in patients with BD showed altered synchronization or network properties. Resting-state EEG was recorded in 57 BD type-I patients and 87 healthy control subjects. Functional connectivity between pairs of EEG channels was measured using synchronization likelihood (SL) for 5 frequency bands (δ, θ, α, β, and γ). Graph-theoretic analysis was applied to SL over the electrode array to assess network properties. BD patients showed a decrease of mean synchronization in the alpha band, and the decreases were greatest in fronto-central and centro-parietal connections. In addition, the clustering coefficient and global efficiency were decreased in BD patients, whereas the characteristic path length increased. We also found that the normalized characteristic path length and small-worldness were significantly correlated with depression scores in BD patients. These results suggest that BD patients show impaired neural synchronization at rest and a disruption of resting-state functional connectivity.


Schizophrenia Research | 2009

Eye-blink conditioning deficits indicate temporal processing abnormalities in schizophrenia

Amanda R. Bolbecker; Crystal S. Mehta; Chad R. Edwards; Joseph E. Steinmetz; Brian F. O'Donnell; William P. Hetrick

Theoretical models suggest that symptoms of schizophrenia may be due to a dysfunctional modulatory system associated with the cerebellum. Although it has long been known that the cerebellum plays a critical role in associative learning and motor timing, recent evidence suggests that it also plays a role in nonmotor psychological processes. Indeed, cerebellar anomalies in schizophrenia have been linked to cognitive dysfunction and poor long-term outcome. To test the hypothesis that schizophrenia is associated with cerebellar dysfunction, cerebellar-dependent, delay eye-blink conditioning was examined in 62 individuals with schizophrenia and 62 age-matched non-psychiatric comparison subjects. The conditioned stimulus was a 400 ms tone, which co-terminated with a 50 ms unconditioned stimulus air puff. A subset of participants (25 with schizophrenia and 29 controls) also completed the Wechsler Abbreviated Scale of Intelligence. Participants with schizophrenia exhibited lower rates of eye-blink conditioning, including earlier (less adaptively timed) conditioned response latencies. Cognitive functioning was correlated with the rate of conditioned responsing in the non-psychiatric comparison subjects but not among those with schizophrenia, and the magnitude of these correlations significantly differed between groups. These findings are consistent with models of schizophrenia in which disruptions within the cortico-cerebellar-thalamic-cortical (CCTC) brain circuit are postulated to underlie the cognitive fragmentation that characterizes the disorder.


PLOS ONE | 2012

Motor Deficits in Schizophrenia Quantified by Nonlinear Analysis of Postural Sway

Jerillyn S. Kent; S. Lee Hong; Amanda R. Bolbecker; Mallory J. Klaunig; Jennifer K. Forsyth; Brian F. O’Donnell; William P. Hetrick

Motor dysfunction is a consistently reported but understudied aspect of schizophrenia. Postural sway area was examined in individuals with schizophrenia under four conditions with different amounts of visual and proprioceptive feedback: eyes open or closed and feet together or shoulder width apart. The nonlinear complexity of postural sway was assessed by detrended fluctuation analysis (DFA). The schizophrenia group (n = 27) exhibited greater sway area compared to controls (n = 37). Participants with schizophrenia showed increased sway area following the removal of visual input, while this pattern was absent in controls. Examination of DFA revealed decreased complexity of postural sway and abnormal changes in complexity upon removal of visual input in individuals with schizophrenia. Additionally, less complex postural sway was associated with increased symptom severity in participants with schizophrenia. Given the critical involvement of the cerebellum and related circuits in postural stability and sensorimotor integration, these results are consistent with growing evidence of motor, cerebellar, and sensory integration dysfunction in the disorder, and with theoretical models that implicate cerebellar deficits and more general disconnection of function in schizophrenia.


PLOS ONE | 2011

Postural control in bipolar disorder: increased sway area and decreased dynamical complexity.

Amanda R. Bolbecker; S. Lee Hong; Jerillyn S. Kent; Mallory J. Klaunig; Brian F. O'Donnell; William P. Hetrick

Structural, neurochemical, and functional abnormalities have been identified in the brains of individuals with bipolar disorder, including in key brain structures implicated in postural control, i.e. the cerebellum, brainstem, and basal ganglia. Given these findings, we tested the hypothesis that postural control deficits are present in individuals with bipolar disorder. Sixteen participants with bipolar disorder (BD) and 16 age-matched non-psychiatric healthy controls were asked to stand as still as possible on a force platform for 2 minutes under 4 conditions: (1) eyes open-open base; (2) eyes closed-open base; (3) eyes open-closed base; and (4) eyes closed-closed base. Postural sway data were submitted to conventional quantitative analyses of the magnitude of sway area using the center of pressure measurement. In addition, data were submitted to detrended fluctuation analysis, a nonlinear dynamical systems analytic technique that measures complexity of a time-series, on both the anterior-posterior and medio-lateral directions. The bipolar disorder group had increased sway area, indicative of reduced postural control. Decreased complexity in the medio-lateral direction was also observed for the bipolar disorder group, suggesting both a reduction in dynamic range available to them for postural control, and that their postural corrections were primarily dominated by longer time-scales. On both of these measures, significant interactions between diagnostic group and visual condition were also observed, suggesting that the BD participants were impaired in their ability to make corrections to their sway pattern when no visual information was available. Greater sway magnitude and reduced complexity suggest that individuals with bipolar disorder have deficits in sensorimotor integration and a reduced range of timescales available on which to make postural corrections.


Bipolar Disorders | 2009

Eyeblink conditioning anomalies in bipolar disorder suggest cerebellar dysfunction

Amanda R. Bolbecker; Crystal S. Mehta; Jason K. Johannesen; Chad R. Edwards; Brian F. O’Donnell; Anantha Shekhar; John I. Nurnberger; Joseph E. Steinmetz; William P. Hetrick

OBJECTIVES Accumulating research implicates the cerebellum in non-motor psychological processes and psychiatric diseases, including bipolar disorder (BD). Despite recent evidence that cerebellar lesions have been documented to trigger bipolar-like symptoms, few studies have directly examined the functional integrity of the cerebellum in those afflicted with BD. METHODS Using a single-cue delay eyeblink conditioning procedure, the functional integrity of the cerebellum was examined in 28 individuals with BD (9 manic, 8 mixed, and 11 euthymic) and 28 age-matched healthy controls. RESULTS Analysis of the bipolar group as a whole indicated a conditioned response acquisition and timing deficit compared to controls. However, when the bipolar group was categorized according to mood state (mixed, manic, euthymic), individuals tested during mixed episodes were strikingly impaired, performing significantly worse than all other groups on both the acquisition and timing of conditioned responses. CONCLUSIONS These findings extend prior research implicating cerebellar functional abnormalities in BD and suggest that cerebellar dysfunction may be associated with mood state and course of illness.


Schizophrenia Research | 2012

Computer-assisted cognitive remediation for schizophrenia: A randomized single-blind pilot study

Olga Rass; Jennifer K. Forsyth; Amanda R. Bolbecker; William P. Hetrick; Alan Breier; Paul H. Lysaker; Brian F. O'Donnell

Cognitive impairment is a core symptom in schizophrenia that has a significant impact on psychosocial function, but shows a weak response to pharmacological treatment. Consequently, a variety of cognitive remediation strategies have been evaluated to improve cognitive function in schizophrenia. The efficacy of computer-based cognitive remediation as a stand-alone intervention on general measures of neuropsychological function remains unclear. We tested the effectiveness of biweekly training using computerized cognitive remediation programs on neuropsychological and event-related potential outcome measures. Schizophrenia patients were randomly assigned to cognitive remediation training (N=17), active control (TV-watching; N=17), or treatment-as-usual (N=10) groups for ten weeks and run in parallel. Cognitive and ERP measures revealed no differential improvement over time in the cognitive remediation group. Practice effects might explain change over time on several cognitive measures for all groups, consistent with studies indicating task-specific improvement. Computer-assisted cognitive remediation alone may not be sufficient for robust or generalized effects on cognitive and electrophysiological measures in schizophrenia patients.


Schizophrenia Bulletin | 2012

Cerebellar-Dependent Eyeblink Conditioning Deficits in Schizophrenia Spectrum Disorders

Jennifer K. Forsyth; Amanda R. Bolbecker; Crystal S. Mehta; Mallory J. Klaunig; Joseph E. Steinmetz; Brian F. O'Donnell; William P. Hetrick

Accumulating evidence suggests that abnormalities in neural circuitry and timing associated with the cerebellum may play a role in the pathophysiology of schizophrenia. Schizotypal personality disorder (SPD) may be genetically linked to schizophrenia, but individuals with SPD are freer from potential research confounds and may therefore offer insight into psychophysiological correlates of schizophrenia. The present study employed a delay eyeblink conditioning (EBC) procedure to examine cerebellar-dependent learning in schizophrenia, SPD, and healthy control subjects (n = 18 per group) who were matched for age and gender. The conditioned stimulus was a 400-ms tone that coterminated with a 50 ms unconditioned stimulus air puff. Cognitive performance on the Picture Completion, Digit Symbol Coding, Similarities, and Digit Span subscales of the Wechsler Adult Intelligence Scale--Third Edition was also investigated. The schizophrenia and SPD groups demonstrated robust EBC impairment relative to the control subjects; they had significantly fewer conditioned responses (CRs), as well as smaller CR amplitudes. Schizophrenia subjects showed cognitive impairment across subscales compared with SPD and control subjects; SPD subjects showed intermediate performance to schizophrenia and control subjects and performed significantly worse than controls on Picture Completion. Impaired EBC was significantly related to decreased processing speed in schizophrenia spectrum subjects. These findings support the role of altered cortico-cerebellar-thalamic-cortical circuitry in the pathophysiology of schizophrenia spectrum disorders.


Bipolar Disorders | 2011

Paced finger-tapping abnormalities in bipolar disorder indicate timing dysfunction

Amanda R. Bolbecker; S. Lee Hong; Jerillyn S. Kent; Jennifer K. Forsyth; Mallory J. Klaunig; Emily K. Lazar; Brian F. O’Donnell; William P. Hetrick

OBJECTIVES Theoretical and empirical evidence suggests that impaired time perception and the neural circuitry contributing to internal timing mechanisms may contribute to severe psychiatric disorders, including mood disorders. The structures that are involved in subsecond timing, i.e., cerebellum and basal ganglia, have also been implicated in the pathophysiology of bipolar disorder. However, the timing of subsecond intervals has infrequently been studied in this population. METHODS Paced finger-tapping tasks have been used to characterize internal timing processes in neuropsychiatric disorders. A total of 42 bipolar disorder patients (25 euthymic, 17 manic) and 42 age-matched healthy controls completed a finger-tapping task in which they tapped in time with a paced (500-ms intertap interval) auditory stimulus (synchronization), then continued tapping without auditory input while attempting to maintain the same pace (continuation). This procedure was followed using the dominant index finger, then with alternating thumbs. RESULTS Bipolar disorder participants showed greater timing variability relative to controls regardless of pacing stimulus (synchronization versus continuation) or condition (dominant index finger versus alternating thumbs). Decomposition of timing variance into internal clock versus motor implementation components using the Wing-Kristofferson model showed higher clock variability in the bipolar disorder groups compared to controls, with no differences between groups on motor implementation variability. CONCLUSIONS These findings suggest that internal timing mechanisms are disrupted in bipolar disorder patients, independent of symptom status. Increased clock variability in bipolar disorder may be related to abnormalities in cerebellar function.

Collaboration


Dive into the Amanda R. Bolbecker's collaboration.

Top Co-Authors

Avatar

William P. Hetrick

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerillyn S. Kent

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Jennifer K. Forsyth

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mallory J. Klaunig

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar

Olga Rass

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge