Amanda R. Panfil
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amanda R. Panfil.
Journal of Virology | 2013
Coral K. Wille; Dhananjay M. Nawandar; Amanda R. Panfil; Michelle M. Ko; Stacy R. Hagemeier; Shannon C. Kenney
ABSTRACT The Epstein-Barr virus (EBV) immediate-early proteins BZLF1 and BRLF1 can both induce lytic EBV reactivation when overexpressed in latently infected cells. Although EBV genome methylation is required for BZLF1-mediated activation of lytic gene expression, the effect of viral genome methylation on BRLF1-mediated viral reactivation has not been well studied. Here, we have compared the effect of viral DNA methylation on BZLF1- versus BRLF1-mediated activation of lytic EBV gene transcription and viral genome replication. We show that most early lytic viral promoters are preferentially activated by BZLF1 in the methylated form, while methylation decreases the ability of BRLF1 to activate most early lytic promoters, as well as the BLRF2 late viral promoter. Moreover, methylation of bacmid constructs containing the EBV genome enhances BZLF1-mediated, but decreases BRLF1-mediated, early lytic gene expression. Methylation of viral promoter DNA does not affect BRLF1 binding to a variety of different CpG-containing BRLF1 binding motifs (RREs) in vitro or in vivo. However, BRLF1 preferentially induces H3K9 histone acetylation of unmethylated promoters in vivo. The methylated and unmethylated forms of an oriLyt-containing plasmid replicate with similar efficiency when transfected into EBV-positive cells that express the essential viral replication proteins in trans. Most importantly, we demonstrate that lytic viral gene expression and replication can be induced by BRLF1, but not BZLF1, expression in an EBV-positive telomerase-immortalized epithelial cell line (NOKs-Akata) in which lytic viral gene promoters remain largely unmethylated. These results suggest that the unmethylated form of the EBV genome can undergo viral reactivation and replication in a BRLF1-dependent manner.
Journal of Virology | 2013
Ryan M. Raver; Amanda R. Panfil; Stacy R. Hagemeier; Shannon C. Kenney
ABSTRACT The latent-to-lytic switch of Epstein-Barr virus (EBV) is mediated by the immediate early protein BZLF1 (Z). However, the cellular factors regulating this process remain incompletely characterized. In this report, we show that the B-cell-specific transcription factor Pax5 helps to promote viral latency in B cells by blocking Z function. Although Z was previously shown to directly interact with Pax5 and inhibit its activity, the effect of Pax5 on Z function has not been investigated. Here, we demonstrate that Pax5 inhibits Z-mediated lytic viral gene expression and the release of infectious viral particles in latently infected epithelial cell lines. Conversely, we found that shRNA-mediated knockdown of endogenous Pax5 in a Burkitt lymphoma B-cell line leads to viral reactivation. Furthermore, we show that Pax5 reduces Z activation of early lytic viral promoters in reporter gene assays and inhibits Z binding to lytic viral promoters in vivo. We confirm that Pax5 and Z directly interact and show that this interaction requires the carboxy-terminal DNA-binding/dimerization domain of Z and the amino-terminal DNA-binding domain of Pax5. A Pax5 DNA-binding mutant (V26G/P80R) that interacts with Z retains the ability to inhibit Z function, whereas a Pax5 mutant (Δ106-110) that is deficient for interaction with Z does not inhibit Z-mediated lytic viral reactivation. Since the B-cell-specific transcription factor Oct-2 also directly interacts with Z and inhibits its function, these results suggest that EBV uses multiple redundant mechanisms to establish and maintain viral latency in B cells.
Journal of Virology | 2016
Amanda R. Panfil; Nathan Dissinger; Cory M. Howard; Brandon M. Murphy; Kristina Landes; Soledad Fernandez; Patrick L. Green
ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) are highly related retroviruses that transform T cells in vitro but have distinct pathological outcomes in vivo. HTLV-1 encodes a protein from the antisense strand of its proviral genome, the HTLV-1 basic leucine zipper factor (HBZ), which inhibits Tax-1-mediated viral transcription and promotes cell proliferation, a high proviral load, and persistence in vivo. In adult T-cell leukemia/lymphoma (ATL) cell lines and patient T cells, hbz is often the only viral gene expressed. The antisense strand of the HTLV-2 proviral genome also encodes a protein termed APH-2. Like HBZ, APH-2 is able to inhibit Tax-2-mediated viral transcription and is detectable in most primary lymphocytes from HTLV-2-infected patients. However, unlike HBZ, the loss of APH-2 in vivo results in increased viral replication and proviral loads, suggesting that HBZ and APH-2 modulate the virus and cellular pathways differently. Herein, we examined the effect of APH-2 on several known HBZ-modulated pathways: NF-κB (p65) transactivation, transforming growth factor β (TGF-β) signaling, and interferon regulatory factor 1 (IRF-1) transactivation. Like HBZ, APH-2 has the ability to inhibit p65 transactivation. Conversely, HBZ and APH-2 have divergent effects on TGF-β signaling and IRF-1 transactivation. Quantitative PCR and protein half-life experiments revealed a substantial disparity between HBZ and APH-2 transcript levels and protein stability, respectively. Taken together, our data further elucidate the functional differences between HBZ and APH-2 and how these differences can have profound effects on the survival of infected cells and, ultimately, pathogenesis. IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) are highly related retroviruses that have distinct pathological outcomes in infected hosts. Functional comparisons of HTLV-1 and HTLV-2 proteins provide a better understanding about how HTLV-1 infection is associated with disease and HTLV-2 infection is not. The HTLV genome antisense-strand genes hbz and aph-2 are often the only viral genes expressed in HTLV-infected T cells. Previously, our group found that HTLV-1 HBZ and HTLV-2 APH-2 had distinct effects in vivo and hypothesized that the differences in the interactions of HBZ and APH-2 with important cell signaling pathways dictate whether cells undergo proliferation, apoptosis, or senescence. Ultimately, these functional differences may affect how HTLV-1 causes disease but HTLV-2 generally does not. In the current study, we compared the effects of HBZ and APH-2 on several HTLV-relevant cellular pathways, including the TGF-β signaling, NF-κB activation, and IRF-1 transactivation pathways.
Virology | 2013
Amanda R. Panfil; Jacob Al-Saleem; Patrick L. Green
Since the isolation and discovery of human T-cell leukemia virus type 1 (HTLV-1) over 30 years ago, researchers have utilized animal models to study HTLV-1 transmission, viral persistence, virus-elicited immune responses, and HTLV-1-associated disease development (ATL, HAM/TSP). Non-human primates, rabbits, rats, and mice have all been used to help understand HTLV-1 biology and disease progression. Non-human primates offer a model system that is phylogenetically similar to humans for examining viral persistence. Viral transmission, persistence, and immune responses have been widely studied using New Zealand White rabbits. The advent of molecular clones of HTLV-1 has offered the opportunity to assess the importance of various viral genes in rabbits, non-human primates, and mice. Additionally, over-expression of viral genes using transgenic mice has helped uncover the importance of Tax and Hbz in the induction of lymphoma and other lymphocyte-mediated diseases. HTLV-1 inoculation of certain strains of rats results in histopathological features and clinical symptoms similar to that of humans with HAM/TSP. Transplantation of certain types of ATL cell lines in immunocompromised mice results in lymphoma. Recently, “humanized” mice have been used to model ATL development for the first time. Not all HTLV-1 animal models develop disease and those that do vary in consistency depending on the type of monkey, strain of rat, or even type of ATL cell line used. However, the progress made using animal models cannot be understated as it has led to insights into the mechanisms regulating viral replication, viral persistence, disease development, and, most importantly, model systems to test disease treatments.
Annual Review of Genetics | 2017
Adam D. Kenney; James A. Dowdle; Leonia Bozzacco; Temet M. McMichael; Corine St. Gelais; Amanda R. Panfil; Yan Sun; Larry S. Schlesinger; Matthew Z. Anderson; Patrick L. Green; Carolina B. López; Brad R. Rosenberg; Li Wu; Jacob S. Yount
Much progress has been made in the identification of specific human gene variants that contribute to enhanced susceptibility or resistance to viral diseases. Herein we review multiple discoveries made with genome-wide or candidate gene approaches that have revealed significant insights into virus-host interactions. Genetic factors that have been identified include genes encoding virus receptors, receptor-modifying enzymes, and a wide variety of innate and adaptive immunity-related proteins. We discuss a range of pathogenic viruses, including influenza virus, respiratory syncytial virus, human immunodeficiency virus, human T cell leukemia virus, human papilloma virus, hepatitis B and C viruses, herpes simplex virus, norovirus, rotavirus, parvovirus, and Epstein-Barr virus. Understanding the genetic underpinnings that affect infectious disease outcomes should allow tailored treatment and prevention approaches in the future.
Viruses | 2015
Amanda R. Panfil; Jacob Al-Saleem; Cory M. Howard; Jessica M. Mates; Jesse J. Kwiek; Robert A. Baiocchi; Patrick L. Green
Human T-cell leukemia virus type-1 (HTLV-1) is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL). This disease manifests after a long clinical latency period of up to 2–3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5) on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i) in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.
Journal of Immunology | 2017
Lindsay M. Webb; Stephanie A. Amici; Kyle A. Jablonski; Himanshu Savardekar; Amanda R. Panfil; Linsen Li; Wei Zhou; Kevin J. Peine; Vrajesh Karkhanis; Eric M. Bachelder; Kristy M. Ainslie; Patrick L. Green; Chenglong Li; Robert A. Baiocchi; Mireia Guerau-de-Arellano
In the autoimmune disease multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), expansion of pathogenic, myelin-specific Th1 cell populations drives active disease; selectively targeting this process may be the basis for a new therapeutic approach. Previous studies have hinted at a role for protein arginine methylation in immune responses, including T cell–mediated autoimmunity and EAE. However, a conclusive role for the protein arginine methyltransferase (PRMT) enzymes that catalyze these reactions has been lacking. PRMT5 is the main PRMT responsible for symmetric dimethylation of arginine residues of histones and other proteins. PRMT5 drives embryonic development and cancer, but its role in T cells, if any, has not been investigated. In this article, we show that PRMT5 is an important modulator of CD4+ T cell expansion. PRMT5 was transiently upregulated during maximal proliferation of mouse and human memory Th cells. PRMT5 expression was regulated upstream by the NF-κB pathway, and it promoted IL-2 production and proliferation. Blocking PRMT5 with novel, highly selective small molecule PRMT5 inhibitors severely blunted memory Th expansion, with preferential suppression of Th1 cells over Th2 cells. In vivo, PRMT5 blockade efficiently suppressed recall T cell responses and reduced inflammation in delayed-type hypersensitivity and clinical disease in EAE mouse models. These data implicate PRMT5 in the regulation of adaptive memory Th cell responses and suggest that PRMT5 inhibitors may be a novel therapeutic approach for T cell–mediated inflammatory disease.
Frontiers in Microbiology | 2018
Amanda R. Panfil; Jacob Al-Saleem; Cory M. Howard; Nikoloz Shkriabai; Mamuka Kvaratskhelia; Patrick L. Green
Human T-cell leukemia virus type 1 (HTLV-1) encodes a protein derived from the antisense strand of the proviral genome designated HBZ (HTLV-1 basic leucine zipper factor). HBZ is the only viral gene consistently expressed in infected patients and adult T-cell leukemia/lymphoma (ATL) tumor cell lines. It functions to antagonize many activities of the Tax viral transcriptional activator, suppresses apoptosis, and supports proliferation of ATL cells. Factors that regulate the stability of HBZ are thus important to the pathophysiology of ATL development. Using affinity-tagged protein and shotgun proteomics, we identified UBR5 as a novel HBZ-binding partner. UBR5 is an E3 ubiquitin-protein ligase that functions as a key regulator of the ubiquitin proteasome system in both cancer and developmental biology. Herein, we investigated the role of UBR5 in HTLV-1-mediated T-cell transformation and leukemia/lymphoma development. The UBR5/HBZ interaction was verified in vivo using over-expression constructs, as well as endogenously in T-cells. shRNA-mediated knockdown of UBR5 enhanced HBZ steady-state levels by stabilizing the HBZ protein. Interestingly, the related HTLV-2 antisense-derived protein, APH-2, also interacted with UBR5 in vivo. However, knockdown of UBR5 did not affect APH-2 protein stability. Co-immunoprecipitation assays identified ubiquitination of HBZ and knockdown of UBR5 resulted in a decrease in HBZ ubiquitination. MS/MS analysis identified seven ubiquitinated lysines in HBZ. Interestingly, UBR5 expression was upregulated in established T lymphocytic leukemia/lymphoma cell lines and the later stage of T-cell transformation in vitro. Finally, we demonstrated loss of UBR5 decreased cellular proliferation in transformed T-cell lines. Overall, our study provides evidence for UBR5 as a host cell E3 ubiquitin-protein ligase responsible for regulating HBZ protein stability. Additionally, our data suggests UBR5 plays an important role in maintaining the proliferative phenotype of transformed T-cell lines.
Retrovirology | 2014
Amanda R. Panfil; Jacob Al-Saleem; Robert A. Baiocchi; Patrick L. Green
Human T-cell leukemia virus-1 (HTLV-1) is a retrovirus that infects an estimated 15-25 million people worldwide. HTLV-1 is the causative infectious agent of adult T-cell leukemia/lymphoma (ATL) and a neurodegenerative disease (HAM/TSP). While the probability of presenting any symptoms related to HTLV-1 infection is relatively low (5-10% for the lifetime of an infected individual), the disease progression and prognosis of those infected individuals who develop ATL is fatal, with a median survival range of 8-10 months. Unfortunately, ATL is highly chemotherapy resistant and while many current therapies improve ATL patient survival, the patients consistently relapse. Therefore, a need exists to develop treatments that improve ATL outcome. We have recently identified PRMT5 (protein arginine methyltransferase 5) as a potential target to modulate HTLV-1 gene expression. We find that PRMT5 levels are elevated in T-cell leukemia/lymphoma cell lines compared to freshly isolated naive T-cells. Likewise, PRMT5 levels are elevated in total PBMCs isolated from ATL patients. However, PRMT5 RNA levels do not correlate to PRMT5 protein levels, suggesting a possible post-transcriptional method of regulation. Furthermore, we also show that PRMT5 levels are elevated during T-cell transformation by using HTLV-1 short-term immortalization assays. Utilizing shRNA vectors, we demonstrate that knockdown of endogenous PRMT5 results in decreased cellular proliferation and increased HTLV-1 viral gene expression. In addition, we observe a decrease in cell proliferation and an increase in viral gene expression when HTLV-1-infected/-transformed cells are treated with a novel small molecule inhibitor of PRMT5 (PRMT5i). Conversely, PRMT5i does not induce re-activation from HIV-1 chronically infected cells. We previously reported a protein-protein interaction between the HTLV-1 accessory protein, p30, and PRMT5. We further show PRMT5 enhances the ability of p30 to inhibit viral gene expression. In conclusion, we find PRMT5 to be a negative regulator of HTLV-1 and a potential target in HTLV-1-mediated disease.
Retrovirology | 2015
Amanda R. Panfil; Nathan Dissinger; Kristina Landes; Patrick L. Green
HTLV-1 and HTLV-2 are highly related retroviruses that transform T-lymphocytes in cell culture, but display distinct pathobiology in vivo. HTLV-1 is the causative infectious agent of adult T-cell leukemia/lymphoma (ATL) and a neurodegenerative disease (HAM/TSP), whereas HTLV-2 is nonpathogenic. HTLV-1 encodes a protein on the antisense strand of its proviral genome called HTLV-1 basic leucine zipper (bZIP) factor (HBZ), which inhibits Tax-mediated viral transcription and is required for high proviral load and efficient viral persistence. Studies have shown that HBZ also modulates several cellular pathways that include activating protein-1 (AP-1), NF-κB, and innate immune responses. HTLV-2 also encodes a protein on the antisense genome strand named antisense protein of HTLV-2 (APH-2). Like HBZ, APH-2 also inhibits Tax-mediated viral transcription. However, we show that unlike HBZ, loss of APH-2 results in enhanced viral replication and viral persistence in infected rabbits. This led us to hypothesize that HBZ and APH-2 modulate cellular pathways differently, which translates to the distinct HTLV-1 and HTLV-2 pathobiology. In this study we directly compared APH-2 and HBZ biologic properties and functions on known HBZ-modulated pathways. We provide evidence that APH-2 protein is significantly less stable than HBZ protein (half-life approximately 30m vs. 6.5h). Despite the difference in protein half-life, HTLV-2 does not compensate for this instability by increasing APH-2 mRNA copy number. Additionally, APH-2 and HBZ share similar mRNA stability measurements. We further show that APH-2 inhibits the transforming growth factor β (TGF-β) signaling pathway in contrast to HBZs enhancement. Like HBZ, APH-2 is able to inhibit the cellular transcription factors p65 (NF-κB) and interferon response factor (IRF)-1. Taken together our results indicate that APH-2 is limited in some functions it shares with HBZ. Further studies should focus on distinct HBZ functions and interacting pathways to find new potential therapeutic targets for HTLV-1 disease.