Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amar B. Singh is active.

Publication


Featured researches published by Amar B. Singh.


Journal of Clinical Investigation | 2005

Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer

Punita Dhawan; Amar B. Singh; Natasha G. Deane; YiRan No; Sheng Ru Shiou; Carl Schmidt; John Neff; M. Kay Washington; R. Daniel Beauchamp

Disruption of the cell-cell junction with concomitant changes in the expression of junctional proteins is a hallmark of cancer cell invasion and metastasis. The role of adherent junction proteins has been studied extensively in cancer, but the roles of tight junction (TJ) proteins are less well understood. Claudins are recently identified members of the tetraspanin family of proteins, which are integral to the structure and function of TJs. Recent studies show changes in expression/cellular localization of claudins during tumorigenesis; however, a causal relationship between claudin expression/localization and cancer has not been established. Here, we report an increased expression of claudin-1 in human primary colon carcinoma and metastasis and in cell lines derived from primary and metastatic tumors. We also report frequent nuclear localization of claudin-1 in these samples. Genetic manipulations of claudin-1 expression in colon cancer cell lines induced changes in cellular phenotype, with structural and functional changes in markers of epithelial-mesenchymal transition. Furthermore, we demonstrate that changes in claudin-1 expression have significant effects on growth of xenografted tumors and metastasis in athymic mice. We further provide data suggesting that the regulation of E-cadherin expression and beta-catenin/Tcf signaling is a possible mechanism underlying claudin-1-dependent changes.


Journal of Clinical Investigation | 2012

CSF-1 signaling mediates recovery from acute kidney injury.

Ming-Zhi Zhang; Bing Yao; Shilin Yang; Li Jiang; Suwan Wang; Xiaofeng Fan; Huiyong Yin; Karlton Wong; Tomoki Miyazawa; Jianchun Chen; Ingrid J. Chang; Amar B. Singh; Raymond C. Harris

Renal tubule epithelia represent the primary site of damage in acute kidney injury (AKI), a process initiated and propagated by the infiltration of macrophages. Here we investigated the role of resident renal macrophages and dendritic cells in recovery from AKI after ischemia/reperfusion (I/R) injury or a novel diphtheria toxin-induced (DT-induced) model of selective proximal tubule injury in mice. DT-induced AKI was characterized by marked renal proximal tubular cell apoptosis. In both models, macrophage/dendritic cell depletion during the recovery phase increased functional and histologic injury and delayed regeneration. After I/R-induced AKI, there was an early increase in renal macrophages derived from circulating inflammatory (M1) monocytes, followed by accumulation of renal macrophages/dendritic cells with a wound-healing (M2) phenotype. In contrast, DT-induced AKI only generated an increase in M2 cells. In both models, increases in M2 cells resulted largely from in situ proliferation in the kidney. Genetic or pharmacologic inhibition of macrophage colony-stimulating factor (CSF-1) signaling blocked macrophage/dendritic cell proliferation, decreased M2 polarization, and inhibited recovery. These findings demonstrated that CSF-1-mediated expansion and polarization of resident renal macrophages/dendritic cells is an important mechanism mediating renal tubule epithelial regeneration after AKI.


Journal of Oncology | 2010

Claudin Family of Proteins and Cancer: An Overview

Amar B. Singh; Ashok Sharma; Punita Dhawan

Tight junctions are the apical cell-cell adhesion that regulate paracellular permeability and are critical for epithelial cell polarity. Molecular architecture of tight junction has been studied extensively, which has confirmed that claudin family of proteins is integral component of tight junction. Loss of cell-cell adhesion is central to the cellular transformation and acquisition of metastatic potential; however, the role of claudin family of proteins play in a series of pathophysiological events, including human carcinoma development, is only now beginning to be understood. Several claudin mouse knockout models have been generated and the diversity of phenotypes observed clearly demonstrates their important roles in the maintenance of tissue integrity in various organs and suggest that claudins also participate in cellular contexts other than tight junctions. The mechanisms of claudin regulation and their exact roles in normal physiology and disease are being elucidated, but much work remains to be done. In this review, we have discussed the conceptual framework concerning claudins and their potential implication in cancer. We predict that next several years will likely witness a boom in our understanding of the potential role of claudins in the regulation of tumorigenesis, which may, in turn, provide new approaches for the targeted therapy.


Experimental Cell Research | 2009

The role of the EGF family of ligands and receptors in renal development, physiology and pathophysiology

Fenghua Zeng; Amar B. Singh; Raymond C. Harris

Mammalian kidney expresses all of the members of the ErbB family of receptors and their respective ligands. Studies support a role for ErbB family receptor activation in kidney development and differentiation. Under physiologic conditions, EGFR activation appears to play an important role in the regulation of renal hemodynamics and electrolyte handling by the kidney, while in different pathophysiologic states, EGFR activation may mediate either beneficial or detrimental effects to the kidney. This article provides an overview of the expression profile of the ErbB family of ligands and receptors in the mammalian kidney and summarizes known physiological and pathophysiological roles of EGFR activation in the organ.


Molecular and Cellular Biology | 2007

Integrin α1β1 Controls Reactive Oxygen Species Synthesis by Negatively Regulating Epidermal Growth Factor Receptor-Mediated Rac Activation

Xiwu Chen; Tristin D. Abair; Maria Raquel Ibanez; Yan Su; Mark R. Frey; Rebecca S. Dise; D. Brent Polk; Amar B. Singh; Raymond C. Harris; Roy Zent; Ambra Pozzi

ABSTRACT Integrins control many cell functions, including generation of reactive oxygen species (ROS) and regulation of collagen synthesis. Mesangial cells, found in the glomerulus of the kidney, are able to produce large amounts of ROS via the NADPH oxidase. We previously demonstrated that integrin α1-null mice develop worse fibrosis than wild-type mice following glomerular injury and this is due, in part, to excessive ROS production by α1-null mesangial cells. In the present studies, we describe the mechanism whereby integrin α1-null mesangial cells produce excessive ROS. Integrin α1-null mesangial cells have constitutively increased basal levels of activated Rac1, which result in its increased translocation to the cell membrane, excessive ROS production, and consequent collagen IV deposition. Basal Rac1 activation is a direct consequence of ligand-independent increased epidermal growth factor receptor (EGFR) phosphorylation in α1-null mesangial cells. Thus, our study demonstrates that integrin α1β1-EGFR cross talk is a key step in negatively regulating Rac1 activation, ROS production, and excessive collagen synthesis, which is a hallmark of diseases characterized by irreversible fibrosis.


Gastroenterology | 2011

Claudin-1 Up-regulates the Repressor ZEB-1 to Inhibit E-Cadherin Expression in Colon Cancer Cells

Amar B. Singh; Ashok Sharma; J. Joshua Smith; Moorthy Krishnan; Xi Chen; Steven Eschrich; Mary Kay Washington; Timothy J. Yeatman; R. Daniel Beauchamp; Punita Dhawan

BACKGROUND & AIMS Expression of the tight junction protein claudin-1 is dysregulated in colon tumors and associates with their progression. Up-regulation of claudin-1 reduces expression of E-cadherin. We investigated the mechanisms by which claudin-1 regulates E-cadherin expression and its effects in colon cancer cells. MATERIALS AND METHODS We used gene expression analysis, immunoblotting, and reverse transcription polymerase chain reaction to associate expression of the repressor of transcription Zinc Finger E-box binding homeobox-box1 (ZEB-1) with claudin-1. We analyzed SW480 colon cancer cells that overexpressed claudin-1, or SW620 cells in which claudin-1 expression was repressed, to determine the effects on ZEB-1 and E-cadherin expression, invasive activity, and resistance to anoikis. We studied cells that expressed constitutively active or dominant negative forms of factors in the Wnt or phosphotidylinositol-3-kinase signaling pathways and used pharmacologic inhibitors of these pathways to study their role in claudin-1-dependent regulation of ZEB-1. We used microarray analysis to examine gene expression patterns in 260 colorectal tumor and normal colon samples. RESULTS Claudin-1 down-regulates E-cadherin expression by up-regulating expression of ZEB-1. Claudin-1 activates Wnt and phosphotidylinositol-3-kinase/Akt signaling. ZEB-1 mediates claudin-1-regulated changes in cell invasion and anoikis. Expression of claudin-1 correlated with that of ZEB-1 in human colon tumor samples. In the progression from normal colonic epithelium to colon adenocarcinoma, levels of E-cadherin decreased, whereas levels of claudin-1 and ZEB-1 increased. Down-regulation of E-cadherin and up-regulation of ZEB-1 in colon tumors were associated with shorter survival times. CONCLUSIONS Claudin-1 up-regulates the repressor ZEB-1 to reduce expression of E-cadherin in colon cancer cells, increasing their invasive activity and reducing anoikis. This pathway is associated with colorectal cancer progression and patient survival.


Oncogene | 2011

Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation

Punita Dhawan; Rizwan Ahmad; Rupesh Chaturvedi; Jesse J. Smith; R Midha; Mukul K. Mittal; Moorthy Krishnan; Xi Chen; Steven Eschrich; Timothy J. Yeatman; Raymond C. Harris; Mary Kay Washington; Keith T. Wilson; Robert D. Beauchamp; Amar B. Singh

Claudin-2 is a unique member of the claudin family of transmembrane proteins, as its expression is restricted to the leaky epithelium in vivo and correlates with epithelial leakiness in vitro. However, recent evidence suggests potential functions of claudin-2 that are relevant to neoplastic transformation and growth. In accordance, here we report, on the basis of analysis of mRNA and protein expression using a total of 309 patient samples that claudin-2 expression is significantly increased in colorectal cancer and correlates with cancer progression. We also report similar increases in claudin-2 expression in inflammatory bowel disease-associated colorectal cancer. Most importantly, we demonstrate that the increased claudin-2 expression in colorectal cancer is causally associated with tumor growth as forced claudin-2 expression in colon cancer cells that do not express claudin-2 resulted in significant increases in cell proliferation, anchorage-independent growth and tumor growth in vivo. We further show that the colonic microenvironment regulates claudin-2 expression in a manner dependent on signaling through the EGF receptor (EGFR), a key regulator of colon tumorigenesis. In addition, claudin-2 expression is specifically decreased in the colon of waved-2 mice, naturally deficient in EGFR activation. Furthermore, genetic silencing of claudin-2 expression in Caco-2, a colon cancer cell line, prevents the EGF-induced increase in cell proliferation. Taken together, these results uncover a novel role for claudin-2 in promoting colon cancer, potentially via EGFR transactivation.


Oncogene | 2010

HDAC inhibitors regulate claudin-1 expression in colon cancer cells through modulation of mRNA stability

Moorthy Krishnan; Amar B. Singh; Jesse J. Smith; Ashok Sharma; Xi Chen; Steven Eschrich; Timothy J. Yeatman; Robert D. Beauchamp; Punita Dhawan

Expression and cellular distribution of claudin-1, a tight junction protein, is dysregulated in colon cancer and its overexpression in colon cancer cells induced dedifferentiation and increased invasion. However, the molecular mechanism(s) underlying dysregulated claudin-1 expression in colon cancer remains poorly understood. Histone deacetylase (HDAC)-dependent histone acetylation is an important mechanism of the regulation of cancer-related genes and inhibition of HDACs induces epithelial differentiation and decreased invasion. Therefore, in this study, we examined the role of HDAC-dependent epigenetic regulation of claudin-1 in colon cancer. In this study, we show that sodium butyrate and Trichostatin A (TSA), two structurally different and widely used HDAC inhibitors, inhibited claudin-1 expression in multiple colon cancer cell lines. Further studies revealed modulation of claudin-1 mRNA stability by its 3′-UTR as the major mechanism underlying HDAC-dependent claudin-1 expression. In addition, overexpression of claudin-1 abrogated the TSA-induced inhibition of invasion in colon cancer cells suggesting functional crosstalk. Analysis of mRNA expression in colon cancer patients, showed a similar pattern of increase in claudin-1 and HDAC-2 mRNA expression throughout all stages of colon cancer. Inhibition of claudin-1 expression by HDAC-2-specific small interfering RNA further supported the role of HDAC-2 in this regulation. Taken together, we report a novel post-transcriptional regulation of claudin-1 expression in colon cancer cells and further show a functional correlation between claudin-1 expression and TSA-mediated regulation of invasion. As HDAC inhibitors are considered to be promising anticancer drugs, these new findings will have implications in both laboratory and clinical settings.


Cancer Research | 2007

Smad4 Regulates Claudin-1 Expression in a Transforming Growth Factor-β–Independent Manner in Colon Cancer Cells

Sheng Ru Shiou; Amar B. Singh; Krishnan Moorthy; Pran K. Datta; M. Kay Washington; R. Daniel Beauchamp; Punita Dhawan

We have recently reported that the expression of a tight junction protein, claudin-1, is increased during colon carcinogenesis and particularly metastatic colorectal cancer. Manipulation of claudin-1 levels in colon cancer cells showed a positive correlation between claudin-1 expression and tumor growth and metastasis. However, the mechanisms underlying the increased claudin-1 expression in colorectal cancer remains unknown. The tumor suppressor Smad4 is a central intracellular signal transduction component of the transforming growth factor-beta (TGF-beta) family of cytokines. Loss of Smad4 protein expression is correlated with poor prognosis and is frequently observed in invasive and metastatic colorectal carcinoma. In the present study, we report an inverse relationship between Smad4 and claudin-1 expression in human colorectal carcinoma tumor samples and in human colon cancer cell lines. We found that the expression of Smad4 in Smad4-deficient but claudin-1-positive SW480 or HT29 colon cancer cell lines down-regulates claudin-1 expression through transcriptional repression by modulating beta-catenin/T-cell factor/lymphocyte enhancer factor activity. Furthermore, this Smad4-dependent inhibition of claudin-1 expression is independent of TGF-beta signaling because Smad4 expression alone is insufficient to restore TGF-beta signaling in the SW480 cells, and the selective TGF-beta receptor kinase inhibitor LY364947 did not prevent the Smad4 suppression of claudin-1 protein expression in either SW480 or HT29 cells. Taken together, these findings suggest a novel mechanism underlying Smad4 tumor-suppressive function through regulation of a potential metastatic modulator, claudin-1, in a TGF-beta-independent manner.


Gut | 2014

Claudin-1 regulates intestinal epithelial homeostasis through the modulation of Notch-signalling

Jillian Pope; Ajaz A. Bhat; Ashok Sharma; Rizwan Ahmad; Moorthy Krishnan; Mary Kay Washington; Robert D. Beauchamp; Amar B. Singh; Punita Dhawan

Objective Claudin-1 expression is increased and dysregulated in colorectal cancer and causally associates with the dedifferentiation of colonic epithelial cells, cancer progression and metastasis. Here, we have sought to determine the role claudin-1 plays in the regulation of intestinal epithelial homeostasis. Design We have used a novel villin-claudin-1 transgenic (Cl-1Tg) mouse as model (with intestinal claudin-1 overexpression). The effect of claudin-1 expression upon colonic epithelial differentiation, lineage commitment and Notch-signalling was determined using immunohistochemical, immunoblot and real-time PCR analysis. The frequently used mouse model of dextran sodium sulfate (DSS)-colitis was used to model inflammation, injury and repair. Results In Cl-1Tg mice, normal colonocyte differentiation programme was disrupted and goblet cell number and mucin-2 (muc-2) expressions were significantly downregulated while Notch- and ERK1/2-signalling were upregulated, compared with the wild type-littermates. Cl-1Tg mice were also susceptible to colonic inflammation and demonstrated impaired recovery and hyperproliferation following the DSS-colitis. Our data further show that claudin-1 regulates Notch-signalling through the regulation of matrix metalloproteinase-9 (MMP-9) and p-ERK signalling to regulate proliferation and differentiation. Conclusions Claudin-1 helps regulate intestinal epithelial homeostasis through the regulation of Notch-signalling. An upregulated claudin-1 expression induces MMP-9 and p-ERK signalling to activate Notch-signalling, which in turn inhibits the goblet cell differentiation. Decreased goblet cell number decreases muc-2 expression and thus enhances susceptibility to mucosal inflammation. Claudin-1 expression also induces colonic epithelial proliferation in a Notch-dependent manner. Our findings may help understand the role of claudin-1 in the regulation of inflammatory bowel diseases and CRC.

Collaboration


Dive into the Amar B. Singh's collaboration.

Top Co-Authors

Avatar

Punita Dhawan

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rizwan Ahmad

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith T. Wilson

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xi Chen

Vanderbilt University

View shared research outputs
Researchain Logo
Decentralizing Knowledge