Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amartya Basu is active.

Publication


Featured researches published by Amartya Basu.


Journal of Virology | 2002

Anti-TAR Polyamide Nucleotide Analog Conjugated with a Membrane-Permeating Peptide Inhibits Human Immunodeficiency Virus Type 1 Production

Neerja Kaushik; Amartya Basu; Paul Palumbo; Rene L. Myers; Virendra N. Pandey

ABSTRACT The emergence of drug-resistant variants has posed a significant setback against effective antiviral treatment for human immunodeficiency virus (HIV) infections. The choice of a nonmutable region of the viral genome such as the conserved transactivation response element (TAR element) in the 5′ long terminal repeat (LTR) may potentially be an effective target for drug development. We have earlier demonstrated that a polyamide nucleotide analog (PNA) targeted to the TAR hairpin element, when transfected into cells, can effectively inhibit Tat-mediated transactivation of HIV type 1 (HIV-1) LTR (T. Mayhood et al., Biochemistry 39:11532-11539, 2000). Here we show that this anti-TAR PNA (PNATAR), upon conjugation with a membrane-permeating peptide vector (transportan) retained its affinity for TAR in vitro similar to the unconjugated analog. The conjugate was efficiently internalized into the cells when added to the culture medium. Examination of the functional efficacy of the PNATAR-transportan conjugate in cell culture using luciferase reporter gene constructs resulted in a significant inhibition of Tat-mediated transactivation of HIV-1 LTR. Furthermore, PNATAR-transportan conjugate substantially inhibited HIV-1 production in chronically HIV-1-infected H9 cells. The mechanism of this inhibition appeared to be regulated at the level of transcription. These results demonstrate the efficacy of PNATAR-transportan as a potential anti-HIV agent.


Antiviral Chemistry & Chemotherapy | 2009

Characterization of Aurintricarboxylic Acid as a Potent Hepatitis C Virus Replicase Inhibitor

Ye Chen; Alain Bopda-Waffo; Amartya Basu; Ramalingam Krishnan; Erica Silberstein; Deborah R. Taylor; Tanaji T. Talele; Payal Arora; Neerja Kaushik-Basu

Background: Hepatitis C virus (HCV) NS5B is an essential component of the viral replication machinery and an important target for antiviral intervention. Aurintricarboxylic acid (ATA), a broad-spectrum antiviral agent, was evaluated and characterized for its anti-NS5B activity in vitro and in HCV replicon cells. Methods: Recombinant NS5B, HCV replicase and Huh-7 cells harbouring the subgenomic HCV replicon of genotype 1b were employed for biochemical and mechanistic investigations. Results: Analysis of ATA activity in vitro yielded equipotent inhibition of recombinant NS5B and HCV replicase in the submicromolar range (50% inhibition concentration [IC50] approximately 150 nM). Biochemical and mechanistic studies revealed a bimodal mechanism of ATA inhibition with characteristics of pyrophosphate mimics and non-nucleoside inhibitors. Molecular modelling and competition displacement studies were consistent with these parameters, suggesting that ATA might bind to the benzothiadiazine allosteric pocket 3 of NS5B or at its catalytic centre. Kinetic studies revealed a mixed mode of ATA inhibition with respect to both RNA and UTP substrates. Under single-cycle assay conditions, ATA inhibited HCV NS5B initiation and elongation from pre-bound RNA, but with ≥fivefold decreased potency compared with continuous polymerization conditions. The IC50 value of ATA for the native replicase complex was 145 nM. In HCV replicon cells, ATA treatment ablated HCV RNA replication (50% effective concentration =75 nM) with concomitant decrease in NS5B expression and no apparent cytotoxic effects. Conclusions: This study identified ATA as a potent anti-NS5B inhibitor and suggests that its unique mode of action might be exploited for structural refinement and development of novel anti-NS5B agents.


Journal of Medicinal Chemistry | 2013

Structure-Based Discovery of Pyrazolobenzothiazine Derivatives As Inhibitors of Hepatitis C Virus Replication

Maria Letizia Barreca; Giuseppe Manfroni; Pieter Leyssen; Johan Winquist; Neerja Kaushik-Basu; Jan Paeshuyse; Ramalingam Krishnan; Nunzio Iraci; Stefano Sabatini; Oriana Tabarrini; Amartya Basu; U. Helena Danielson; Johan Neyts; Violetta Cecchetti

The NS5B RNA-dependent RNA polymerase is an attractive target for the development of novel and selective inhibitors of hepatitis C virus replication. To identify novel structural hits as anti-HCV agents, we performed structure-based virtual screening of our in-house library followed by rational drug design, organic synthesis, and biological testing. These studies led to the identification of pyrazolobenzothiazine scaffold as a suitable template for obtaining novel anti-HCV agents targeting the NS5B polymerase. The best compound of this series was the meta-fluoro-N-1-phenyl pyrazolobenzothiazine derivative 4a, which exhibited an EC50 = 3.6 μM, EC90 = 25.6 μM, and CC50 > 180 μM in the Huh 9-13 replicon system, thus providing a good starting point for further hit evolution.


Journal of Chemical Information and Modeling | 2014

Multiple e-Pharmacophore Modeling, 3D-QSAR, and High-Throughput Virtual Screening of Hepatitis C Virus NS5B Polymerase Inhibitors

Patrisha Joseph Therese; Dinesh Manvar; Sridevi Kondepudi; Madhu Babu Battu; Dharmaranjan Sriram; Amartya Basu; Perumal Yogeeswari; Neerja Kaushik-Basu

The hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase (RdRP) is a crucial and unique component of the HCV RNA replication machinery and a validated target for drug discovery. Multiple crystal structures of NS5B inhibitor complexes have facilitated the identification of novel compound scaffolds through in silico analysis. With the goal of discovering new NS5B inhibitor leads, HCV NS5B crystal structures bound with inhibitors in the palm and thumb allosteric pockets in combination with ligands with known inhibitory potential were explored for a comparative pharmacophore analyses. The energy-based and 3D-QSAR-based pharmacophore models were validated using enrichment analysis, and the six models thus developed were employed for high-throughput virtual screening and docking to identify nonpeptidic leads. The hits derived at each stage were analyzed for diversity based on the six pharmacophore models, followed by molecular docking and filtering based on their interaction with amino acids in the NS5B allosteric pocket and 3D-QSAR predictions. The resulting 10 hits displaying diverse scaffold were then screened employing biochemical and cell-based NS5B and anti-HCV inhibition assays. Of these, two molecules H-5 and H-6 were the most promising, exhibiting IC50 values of 28.8 and 47.3 μM against NS5B polymerase and anti-HCV inhibition of 96% and 86% at 50 μM, respectively. The identified leads comprised of benzimidazole (H-5) and pyridine (H-6) scaffolds thus constitute prototypical molecules for further optimization and development as NS5B inhibitors.


European Journal of Medicinal Chemistry | 2013

2-Heteroarylimino-5-arylidene-4-thiazolidinones as a new class of non-nucleoside inhibitors of HCV NS5B polymerase

İlkay Küçükgüzel; Gökhan Satılmış; K.R. Gurukumar; Amartya Basu; Esra Tatar; Daniel B. Nichols; Tanaji T. Talele; Neerja Kaushik-Basu

Hepatitis C virus (HCV) NS5B polymerase is an important and attractive target for the development of anti-HCV drugs. Here we report on the design, synthesis and evaluation of twenty-four novel allosteric inhibitors bearing the 4-thiazolidinone scaffold as inhibitors of HCV NS5B polymerase. Eleven compounds tested were found to inhibit HCV NS5B with IC₅₀ values ranging between 19.8 and 64.9 μM. Compound 24 was the most active of this series with an IC₅₀ of 5.6 μM. A number of these derivatives further exhibited strong inhibition against HCV 1b and 2a genotypes in cell based antiviral assays. Molecular docking analysis predicted that the thiazolidinone derivatives bind to the NS5B thumb pocket-II (TP-II). Our results suggest that further optimization of the thiazolidinone scaffold may be possible to yield new derivatives with improved enzyme- and cell-based activity.


BioDrugs | 2008

Peptide inhibition of HIV-1: current status and future potential.

Neerja Kaushik-Basu; Amartya Basu; Dylan Harris

More than 2 decades of intensive research has focused on defining replication mechanisms of HIV type 1 (HIV-1), the etiologic agent of AIDS. The delineation of strategies for combating this viral infection has yielded many innovative approaches toward this end. HIV-1 is a lentivirus in the family retroviridae that is relatively small with regard to both structure and genome size, having a diploid RNA genome of approximately 9 kb, with only three major genes and several gene products resulting from alternate splicing and translational frameshifting. Most marketed drugs for treating AIDS are inhibitors of HIV-1 reverse transcriptase or protease enzymes, but new targets include the integrase enzyme, cell surface interactions that facilitate viral entry, and also virus particle maturation and assembly. The emergence of drug-resistant variants of HIV-1 has been the main impediment to successful treatment of AIDS. Thus, there is a pressing need to develop novel treatment strategies targeting multiple stages of the virus life-cycle. Research efforts aimed at developing successful means for combating HIV-1 infection have included development of peptide inhibitors of HIV-1. This article summarizes past and current endeavors in the development of peptides that inhibit replication of HIV-1 and the role of peptide inhibitors in the search for new anti-HIV drugs.


Antiviral Research | 2002

Inhibition of HIV-1 replication by anti-trans-activation responsive polyamide nucleotide analog

Neerja Kaushik; Amartya Basu; Virendra N. Pandey

Efficient replication and gene expression of human immunodeficiency virus-1 (HIV-1) involves specific interaction of the viral protein Tat, with its trans-activation responsive element (TAR) which forms a highly stable stem-loop structure. We have earlier shown that a 15-mer polyamide nucleotide analog (PNA) targeted to the loop and bulge region of TAR blocks Tat-mediated transactivation of the HIV-1 LTR both in vitro and in cell culture (Mayhood et al., Biochemistry 39 (2000) 11532). In this communication, we have designed four anti-TAR PNAs of different length such that they either complement the entire loop and bulge region (PNA(TAR-16) and PNA(TAR-15)) or are short of few sequences in the loop (PNA(TAR-13)) or in both the loop and bulge (PNA(TAR-12)), and examined their functional efficacy in vitro as well as in HIV-1 infected cell cultures. All four anti-TAR PNAs showed strong affinity for TAR RNA, while their ability to block in vitro reverse transcription was influenced by their length. In marked contrast to PNA(TAR-12) and PNA(TAR-13), the two longer PNA(TARs) were able to efficiently sequester the targeted site on TAR RNA, thereby substantially inhibiting Tat-mediated transactivation of the HIV-1 LTR. Further, a substantial inhibition of virus production was noted with all the four anti-TAR PNA, with PNA(TAR-16) exhibiting a dramatic reduction of HIV-1 production by nearly 99%. These results point to PNA(TAR-16) as a potential anti-HIV agent.


Molecules | 2013

Synthesis and characterization of celecoxib derivatives as possible anti-inflammatory, analgesic, antioxidant, anticancer and anti-HCV agents.

Sevil Aydın; Göknur Aktay; Ozge Cevik; Derya Özsavcı; Azize Şener; Neerja Kaushik-Basu; Amartya Basu; Tanaji T. Talele

A series of novel N-(3-substituted aryl/alkyl-4-oxo-1,3-thiazolidin-2-ylidene)-4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamides 2a–e were synthesized by the addition of ethyl α-bromoacetate and anhydrous sodium acetate in dry ethanol to N-(substituted aryl/alkylcarbamothioyl)-4-[5-(4-methylphenyl)-3-(trifluoro-methyl)-1H-pyrazol-1-yl]benzene sulfonamides 1a–e, which were synthesized by the reaction of alkyl/aryl isothiocyanates with celecoxib. The structures of the isolated products were determined by spectral methods and their anti-inflammatory, analgesic, antioxidant, anticancer and anti-HCV NS5B RNA-dependent RNA polymerase (RdRp) activities evaluated. The compounds were also tested for gastric toxicity and selected compound 1a was screened for its anticancer activity against 60 human tumor cell lines. These investigations revealed that compound 1a exhibited anti-inflammatory and analgesic activities and further did not cause tissue damage in liver, kidney, colon and brain compared to untreated controls or celecoxib. Compounds 1c and 1d displayed modest inhibition of HCV NS5B RdRp activity. In conclusion, N-(ethylcarbamothioyl)-4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (1a) may have the potential to be developed into a therapeutic agent.


Journal of Medicinal Chemistry | 2014

New Pyrazolobenzothiazine Derivatives as Hepatitis C Virus NS5B Polymerase Palm Site I Inhibitors

Giuseppe Manfroni; Dinesh Manvar; Maria Letizia Barreca; Neerja Kaushik-Basu; Pieter Leyssen; Jan Paeshuyse; Rolando Cannalire; Nunzio Iraci; Amartya Basu; Maxim Chudaev; Claudio Zamperini; Elena Dreassi; Stefano Sabatini; Oriana Tabarrini; Johan Neyts; Violetta Cecchetti

We have previously identified the pyrazolobenzothiazine scaffold as a promising chemotype against hepatitis C virus (HCV) NS5B polymerase, a validated and promising anti-HCV target. Herein we describe the design, synthesis, enzymatic, and cellular characterization of new pyrazolobenzothiazines as anti-HCV inhibitors. The binding site for a representative derivative was mapped to NS5B palm site I employing a mutant counterscreen assay, thus validating our previous in silico predictions. Derivative 2b proved to be the best selective anti-HCV derivative within the new series, exhibiting a IC50 of 7.9 μM against NS5B polymerase and antiviral effect (EC50 = 8.1 μM; EC90 = 23.3 μM) coupled with the absence of any antimetabolic effect (CC50 > 224 μM; SI > 28) in a cell based HCV replicon system assay. Significantly, microscopic analysis showed that, unlike the parent compounds, derivative 2b did not show any significant cell morphological alterations. Furthermore, since most of the pyrazolobenzothiazines tested altered cell morphology, this undesired aspect was further investigated by exploring possible perturbation of lipid metabolism during compound treatment.


European Journal of Medicinal Chemistry | 2012

Inhibition of hepatitis C virus NS5B polymerase by S-trityl-L-cysteine derivatives.

Daniel B. Nichols; Guy Fournet; K.R. Gurukumar; Amartya Basu; Jin-Ching Lee; Naoya Sakamoto; Frank Kozielski; Ira Musmuca; Benoît Joseph; Rino Ragno; Neerja Kaushik-Basu

Structure-based studies led to the identification of a constrained derivative of S-trityl-l-cysteine (STLC) scaffold as a candidate inhibitor of hepatitis C virus (HCV) NS5B polymerase. A panel of STLC derivatives were synthesized and investigated for their activity against HCV NS5B. Three STLC derivatives, 9, F-3070, and F-3065, were identified as modest HCV NS5B inhibitors with IC(50) values between 22.3 and 39.7 μM. F-3070 and F-3065 displayed potent inhibition of intracellular NS5B activity in the BHK-NS5B-FRLuc reporter and also inhibited HCV RNA replication in the Huh7/Rep-Feo1b reporter system. Binding mode investigations suggested that the STLC scaffold can be used to develop new NS5B inhibitors by further chemical modification at one of the trityl phenyl group.

Collaboration


Dive into the Amartya Basu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge