Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amartya Sanyal is active.

Publication


Featured researches published by Amartya Sanyal.


Nature | 2012

The accessible chromatin landscape of the human genome.

Robert E. Thurman; Eric Rynes; Richard Humbert; Jeff Vierstra; Matthew T. Maurano; Eric Haugen; Nathan C. Sheffield; Andrew B. Stergachis; Hao Wang; Benjamin Vernot; Kavita Garg; Sam John; Richard Sandstrom; Daniel Bates; Lisa Boatman; Theresa K. Canfield; Morgan Diegel; Douglas Dunn; Abigail K. Ebersol; Tristan Frum; Erika Giste; Audra K. Johnson; Ericka M. Johnson; Tanya Kutyavin; Bryan R. Lajoie; Bum Kyu Lee; Kristen Lee; Darin London; Dimitra Lotakis; Shane Neph

DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ∼2.9 million DHSs that encompass virtually all known experimentally validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. We connect ∼580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is organized with dozens to hundreds of co-activated elements, and the transcellular DNase I sensitivity pattern at a given region can predict cell-type-specific functional behaviours. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation.


Nature | 2011

A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression

Kevin C. Wang; Yul W. Yang; Bo Liu; Amartya Sanyal; Ryan Corces-Zimmerman; Yong Chen; Bryan R. Lajoie; Angeline Protacio; Ryan A. Flynn; Rajnish A. Gupta; Joanna Wysocka; Ming Lei; Job Dekker; Jill A. Helms; Howard Y. Chang

The genome is extensively transcribed into long intergenic noncoding RNAs (lincRNAs), many of which are implicated in gene silencing. Potential roles of lincRNAs in gene activation are much less understood. Development and homeostasis require coordinate regulation of neighbouring genes through a process termed locus control. Some locus control elements and enhancers transcribe lincRNAs, hinting at possible roles in long-range control. In vertebrates, 39 Hox genes, encoding homeodomain transcription factors critical for positional identity, are clustered in four chromosomal loci; the Hox genes are expressed in nested anterior-posterior and proximal-distal patterns colinear with their genomic position from 3′ to 5′of the cluster. Here we identify HOTTIP, a lincRNA transcribed from the 5′ tip of the HOXA locus that coordinates the activation of several 5′ HOXA genes in vivo. Chromosomal looping brings HOTTIP into close proximity to its target genes. HOTTIP RNA binds the adaptor protein WDR5 directly and targets WDR5/MLL complexes across HOXA, driving histone H3 lysine 4 trimethylation and gene transcription. Induced proximity is necessary and sufficient for HOTTIP RNA activation of its target genes. Thus, by serving as key intermediates that transmit information from higher order chromosomal looping into chromatin modifications, lincRNAs may organize chromatin domains to coordinate long-range gene activation.


Nature | 2012

The long-range interaction landscape of gene promoters

Amartya Sanyal; Bryan R. Lajoie; Gaurav Jain; Job Dekker

The vast non-coding portion of the human genome is full of functional elements and disease-causing regulatory variants. The principles defining the relationships between these elements and distal target genes remain unknown. Promoters and distal elements can engage in looping interactions that have been implicated in gene regulation. Here we have applied chromosome conformation capture carbon copy (5C) to interrogate comprehensively interactions between transcription start sites (TSSs) and distal elements in 1% of the human genome representing the ENCODE pilot project regions. 5C maps were generated for GM12878, K562 and HeLa-S3 cells and results were integrated with data from the ENCODE consortium. In each cell line we discovered >1,000 long-range interactions between promoters and distal sites that include elements resembling enhancers, promoters and CTCF-bound sites. We observed significant correlations between gene expression, promoter–enhancer interactions and the presence of enhancer RNAs. Long-range interactions show marked asymmetry with a bias for interactions with elements located ∼120 kilobases upstream of the TSS. Long-range interactions are often not blocked by sites bound by CTCF and cohesin, indicating that many of these sites do not demarcate physically insulated gene domains. Furthermore, only ∼7% of looping interactions are with the nearest gene, indicating that genomic proximity is not a simple predictor for long-range interactions. Finally, promoters and distal elements are engaged in multiple long-range interactions to form complex networks. Our results start to place genes and regulatory elements in three-dimensional context, revealing their functional relationships.


Cell | 2013

Architectural Protein Subclasses Shape 3D Organization of Genomes during Lineage Commitment

Jennifer E. Phillips-Cremins; Michael Eg Sauria; Amartya Sanyal; Tatiana Gerasimova; Bryan R. Lajoie; Joshua S.K. Bell; Chin‑Tong Ong; Tracy A. Hookway; Changying Guo; Yuhua Sun; Michael J. Bland; William Andrew Wagstaff; Stephen Dalton; Todd C. McDevitt; Ranjan Sen; Job Dekker; James Taylor; Victor G. Corces

Understanding the topological configurations of chromatin may reveal valuable insights into how the genome and epigenome act in concert to control cell fate during development. Here, we generate high-resolution architecture maps across seven genomic loci in embryonic stem cells and neural progenitor cells. We observe a hierarchy of 3D interactions that undergo marked reorganization at the submegabase scale during differentiation. Distinct combinations of CCCTC-binding factor (CTCF), Mediator, and cohesin show widespread enrichment in chromatin interactions at different length scales. CTCF/cohesin anchor long-range constitutive interactions that might form the topological basis for invariant subdomains. Conversely, Mediator/cohesin bridge short-range enhancer-promoter interactions within and between larger subdomains. Knockdown of Smc1 or Med12 in embryonic stem cells results in disruption of spatial architecture and downregulation of genes found in cohesin-mediated interactions. We conclude that cell-type-specific chromatin organization occurs at the submegabase scale and that architectural proteins shape the genome in hierarchical length scales.


Genome Biology | 2012

An encyclopedia of mouse DNA elements (Mouse ENCODE)

John A. Stamatoyannopoulos; Michael Snyder; Ross C. Hardison; Bing Ren; Thomas R. Gingeras; David M. Gilbert; Mark Groudine; M. A. Bender; Rajinder Kaul; Theresa K. Canfield; Erica Giste; Audra K. Johnson; Mia Zhang; Gayathri Balasundaram; Rachel Byron; Vaughan Roach; Peter J. Sabo; Richard Sandstrom; A Sandra Stehling; Robert E. Thurman; Sherman M. Weissman; Philip Cayting; Manoj Hariharan; Jin Lian; Yong Cheng; Stephen G. Landt; Zhihai Ma; Barbara J. Wold; Job Dekker; Gregory E. Crawford

To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.


Nature Structural & Molecular Biology | 2011

The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules

Davide Baù; Amartya Sanyal; Bryan R. Lajoie; Emidio Capriotti; Meg Byron; Jeanne B. Lawrence; Job Dekker; Marc A. Marti-Renom

We developed a general approach that combines chromosome conformation capture carbon copy (5C) with the Integrated Modeling Platform (IMP) to generate high-resolution three-dimensional models of chromatin at the megabase scale. We applied this approach to the ENm008 domain on human chromosome 16, containing the α-globin locus, which is expressed in K562 cells and silenced in lymphoblastoid cells (GM12878). The models accurately reproduce the known looping interactions between the α-globin genes and their distal regulatory elements. Further, we find using our approach that the domain folds into a single globular conformation in GM12878 cells, whereas two globules are formed in K562 cells. The central cores of these globules are enriched for transcribed genes, whereas nontranscribed chromatin is more peripheral. We propose that globule formation represents a higher-order folding state related to clustering of transcribed genes around shared transcription machineries, as previously observed by microscopy.


The New England Journal of Medicine | 2016

Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma.

Michael J. McGeachie; Katherine P. Yates; Xiaobo Zhou; Feng Guo; Alice L. Sternberg; Mark L. Van Natta; Robert A. Wise; Stanley J. Szefler; Sunita Sharma; Alvin T. Kho; Michael H. Cho; Damien C. Croteau-Chonka; Peter J. Castaldi; Gaurav Jain; Amartya Sanyal; Ye Zhan; Bryan R. Lajoie; Job Dekker; John A. Stamatoyannopoulos; Ronina A. Covar; Robert S. Zeiger; N. Franklin Adkinson; Paul T. Williams; H. William Kelly; Hartmut Grasemann; Judith M. Vonk; Gerard H. Koppelman; Dirkje S. Postma; Benjamin A. Raby; Isaac Houston

BACKGROUND Tracking longitudinal measurements of growth and decline in lung function in patients with persistent childhood asthma may reveal links between asthma and subsequent chronic airflow obstruction. METHODS We classified children with asthma according to four characteristic patterns of lung-function growth and decline on the basis of graphs showing forced expiratory volume in 1 second (FEV1), representing spirometric measurements performed from childhood into adulthood. Risk factors associated with abnormal patterns were also examined. To define normal values, we used FEV1 values from participants in the National Health and Nutrition Examination Survey who did not have asthma. RESULTS Of the 684 study participants, 170 (25%) had a normal pattern of lung-function growth without early decline, and 514 (75%) had abnormal patterns: 176 (26%) had reduced growth and an early decline, 160 (23%) had reduced growth only, and 178 (26%) had normal growth and an early decline. Lower baseline values for FEV1, smaller bronchodilator response, airway hyperresponsiveness at baseline, and male sex were associated with reduced growth (P<0.001 for all comparisons). At the last spirometric measurement (mean [±SD] age, 26.0±1.8 years), 73 participants (11%) met Global Initiative for Chronic Obstructive Lung Disease spirometric criteria for lung-function impairment that was consistent with chronic obstructive pulmonary disease (COPD); these participants were more likely to have a reduced pattern of growth than a normal pattern (18% vs. 3%, P<0.001). CONCLUSIONS Childhood impairment of lung function and male sex were the most significant predictors of abnormal longitudinal patterns of lung-function growth and decline. Children with persistent asthma and reduced growth of lung function are at increased risk for fixed airflow obstruction and possibly COPD in early adulthood. (Funded by the Parker B. Francis Foundation and others; ClinicalTrials.gov number, NCT00000575.).


Current Opinion in Cell Biology | 2011

Chromatin globules: a common motif of higher - order chromosome structure?

Amartya Sanyal; Davide Baù; Marc A. Marti-Renom; Job Dekker

Recent technological advances in the field of chromosome conformation capture are facilitating tremendous progress in the ability to map the three-dimensional (3D) organization of chromosomes at a resolution of several Kb and at the scale of complete genomes. Here we review progress in analyzing chromosome organization in human cells by building 3D models of chromatin based on comprehensive chromatin interaction datasets. We describe recent experiments that suggest that long-range interactions between active functional elements are sufficient to drive folding of local chromatin domains into compact globular states. We propose that chromatin globules are commonly formed along chromosomes, in a cell type specific pattern, as a result of frequent long-range interactions among active genes and nearby regulatory elements. Further, we speculate that increasingly longer range interactions can drive aggregation of groups of globular domains. This process would yield a compartmentalized chromosome conformation, consistent with recent observations obtained with genome-wide chromatin interaction mapping.


Nature Methods | 2009

My5C: web tools for chromosome conformation capture studies

Bryan R. Lajoie; Nynke L. van Berkum; Amartya Sanyal; Job Dekker

The three-dimensional arrangement of chromosomes is critical for genome regulation and is the topic of intense research. Chromosome organization can be studied using Chromosome Conformation Capture (3C) - based assays1,2. 5C (“3C-Carbon Copy”) is an adaptation of 3C for high-throughput analysis of interaction networks and three-dimensional folding of chromosomes3. 5C combines 3C with multiplexed ligation-mediated amplification with pools of primers to detect millions of chromatin interactions in parallel (Fig. 1). The design of large numbers of 5C primers and the handling of large chromatin interaction maps can be daunting. To enable the community to adopt 5C we developed “my5C”, a publicly available set of webtools for all aspects of 5C studies. My5C is hosted at http://my5C.umassmed.edu. Here we highlight the main features of my5C (see also Supplemental Data 1–4). Figure 1 Overview of my5C. (a) Top: 5C technology and locations of forward and reverse primers. Bottom: 5C ligation product. (b) 5C primer design output of my5C.primers showing an alternating design scheme. The triangles indicate restriction fragments. The height ... My5C is composed of two modules. The “my5C.primers” module is used to design 5C primers for restriction fragments throughout user-defined genomic regions (Supplemental Data 5). For analysis of overall three-dimensional conformation alternating primer design schemes3 (Fig. 1b) can be selected (Supplemental Data 6). For studies of networks of interactions between specific genomic elements, e.g. promoters and enhancers3, users can upload Datas containing genomic coordinates of these elements and my5C.primers will design forward and reverse primers for the two sets (Supplemental Data 7). Primer designs can be downloaded along with a custom microarray probe set for detection of all interactions that the primers interrogate. In the second module, “my5C.heatmap”, datasets are visualized as two-dimensional heatmaps (Supplemental Data 8–13). Each datapoint corresponds to an interaction frequency between two loci (Fig. 1c). To facilitate exploration of large interaction maps the heatmaps are interactive: when moving the cursor over the heatmap detailed information is provided regarding the interaction at the cursor position. Clicking an interaction will display interaction proDatas across the dataset for each of the interacting loci. My5C.heatmap provides a variety of tools to analyze interaction data. Users can display the difference, ratio or log ratio of two datasets. My5C.heatmap also enables users to identify elements that interact more frequently than expected, which may point to specific looping associations. To identify larger patterns, users can smooth data or perform sliding window analysis (Fig. 1c). My5C.heatmap enables integrating chromosome conformation data with other genomic features. When a position on the heatmap is clicked, links to the UCSC genome browser appear that lead to the corresponding positions in the genome to explore other annotations. Further, lists of genomic annotations, e.g. promoters, can be uploaded and My5C.heatmap will highlight interaction data obtained for these loci in the heatmap. Users can download any data displayed as a heatmap as tables or as lists of pairwise interactions that can be uploaded into Cytoscape for network visualization4. Data can be downloaded in UCSC BED format to display data as custom tracks in the UCSC genome browser (Fig. 1d, Supplemental Data 11). This allows users to integrate interaction data with publicly available genome annotations in the genome browser. To ensure confidentiality all data are password protected and users can opt not to store data on the my5C server. My5C provides a critical resource to the emerging field of chromosome conformational studies.


Methods | 2012

From cells to chromatin: Capturing snapshots of genome organization with 5C technology

Maria Ferraiuolo; Amartya Sanyal; Natalia Naumova; Job Dekker; Josée Dostie

In eukaryotes, genome organization can be observed on many levels and at different scales. This organization is important not only to reduce chromosome length but also for the proper execution of various biological processes. High-resolution mapping of spatial chromatin structure was made possible by the development of the chromosome conformation capture (3C) technique. 3C uses chemical cross-linking followed by proximity-based ligation of fragmented DNA to capture frequently interacting chromatin segments in cell populations. Several 3C-related methods capable of higher chromosome conformation mapping throughput were reported afterwards. These techniques include the 3C-carbon copy (5C) approach, which offers the advantage of being highly quantitative and reproducible. We provide here an updated reference protocol for the production of 5C libraries analyzed by next-generation sequencing or onto microarrays. A procedure used to verify that 3C library templates bear the high quality required to produce superior 5C libraries is also described. We believe that this detailed protocol will help guide researchers in probing spatial genome organization and its role in various biological processes.

Collaboration


Dive into the Amartya Sanyal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Job Dekker

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan R. Lajoie

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Z. Goodman

Inova Fairfax Hospital

View shared research outputs
Top Co-Authors

Avatar

Nezam H. Afdhal

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaime Bosch

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Rohit Loomba

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge