Amaury Cazenave-Gassiot
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amaury Cazenave-Gassiot.
Nature | 2014
Long N. Nguyen; Dongliang Ma; Guanghou Shui; Peiyan Wong; Amaury Cazenave-Gassiot; Xiaodong Zhang; Markus R. Wenk; Eyleen L. K. Goh; David L. Silver
Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is essential for normal brain growth and cognitive function. Consistent with its importance in the brain, DHA is highly enriched in brain phospholipids. Despite being an abundant fatty acid in brain phospholipids, DHA cannot be de novo synthesized in brain and must be imported across the blood–brain barrier, but mechanisms for DHA uptake in brain have remained enigmatic. Here we identify a member of the major facilitator superfamily—Mfsd2a (previously an orphan transporter)—as the major transporter for DHA uptake into brain. Mfsd2a is found to be expressed exclusively in endothelium of the blood–brain barrier of micro-vessels. Lipidomic analysis indicates that Mfsd2a-deficient (Mfsd2a-knockout) mice show markedly reduced levels of DHA in brain accompanied by neuronal cell loss in hippocampus and cerebellum, as well as cognitive deficits and severe anxiety, and microcephaly. Unexpectedly, cell-based studies indicate that Mfsd2a transports DHA in the form of lysophosphatidylcholine (LPC), but not unesterified fatty acid, in a sodium-dependent manner. Notably, Mfsd2a transports common plasma LPCs carrying long-chain fatty acids such LPC oleate and LPC palmitate, but not LPCs with less than a 14-carbon acyl chain. Moreover, we determine that the phosphor-zwitterionic headgroup of LPC is critical for transport. Importantly, Mfsd2a-knockout mice have markedly reduced uptake of labelled LPC DHA, and other LPCs, from plasma into brain, demonstrating that Mfsd2a is required for brain uptake of DHA. Our findings reveal an unexpected essential physiological role of plasma-derived LPCs in brain growth and function.
Nature Genetics | 2015
Alicia Guemez-Gamboa; Long N. Nguyen; Hongbo Yang; Maha S. Zaki; Majdi Kara; Tawfeg Ben-Omran; Naiara Akizu; Rasim Ozgur Rosti; Basak Rosti; Eric Scott; Jana Schroth; Brett Copeland; Keith K. Vaux; Amaury Cazenave-Gassiot; Debra Q.Y. Quek; Bernice H. Wong; Bryan C. Tan; Markus R. Wenk; Murat Gunel; Stacey Gabriel; Neil C. Chi; David L. Silver; Joseph G. Gleeson
Docosahexanoic acid (DHA) is the most abundant omega-3 fatty acid in brain, and, although it is considered essential, deficiency has not been linked to disease. Despite the large mass of DHA in phospholipids, the brain does not synthesize it. DHA is imported across the blood-brain barrier (BBB) through the major facilitator superfamily domain–containing 2a (MFSD2A) protein. MFSD2A transports DHA as well as other fatty acids in the form of lysophosphatidylcholine (LPC). We identify two families displaying MFSD2A mutations in conserved residues. Affected individuals exhibited a lethal microcephaly syndrome linked to inadequate uptake of LPC lipids. The MFSD2A mutations impaired transport activity in a cell-based assay. Moreover, when expressed in mfsd2aa-morphant zebrafish, mutants failed to rescue microcephaly, BBB breakdown and lethality. Our results establish a link between transport of DHA and LPCs by MFSD2A and human brain growth and function, presenting the first evidence of monogenic disease related to transport of DHA in humans.
Nature Genetics | 2015
Vafa Alakbarzade; Abdul Hameed; Debra Q.Y. Quek; Barry A. Chioza; Emma L. Baple; Amaury Cazenave-Gassiot; Long N. Nguyen; Markus R. Wenk; Arshia Q Ahmad; Ajith Sreekantan-Nair; Michael N. Weedon; Phil Rich; Michael A. Patton; Thomas T. Warner; David L. Silver; Andrew H. Crosby
The major pathway by which the brain obtains essential omega-3 fatty acids from the circulation is through a sodium-dependent lysophosphatidylcholine (LPC) transporter (MFSD2A), expressed in the endothelium of the blood-brain barrier. Here we show that a homozygous mutation affecting a highly conserved MFSD2A residue (p.Ser339Leu) is associated with a progressive microcephaly syndrome characterized by intellectual disability, spasticity and absent speech. We show that the p.Ser339Leu alteration does not affect protein or cell surface expression but rather significantly reduces, although not completely abolishes, transporter activity. Notably, affected individuals displayed significantly increased plasma concentrations of LPCs containing mono- and polyunsaturated fatty acyl chains, indicative of reduced brain uptake, confirming the specificity of MFSD2A for LPCs having mono- and polyunsaturated fatty acyl chains. Together, these findings indicate an essential role for LPCs in human brain development and function and provide the first description of disease associated with aberrant brain LPC transport in humans.
Molecular & Cellular Proteomics | 2014
Madhu Sudhan Ravindran; Srinivasa P. S. Rao; Xiamin Cheng; Ankit Shukla; Amaury Cazenave-Gassiot; Shao Q. Yao; Markus R. Wenk
Tetrahydrolipstatin (THL) is bactericidal but its precise target spectrum is poorly characterized. Here, we used a THL analog and activity-based protein profiling to identify target proteins after enrichment from whole cell lysates of Mycobacterium bovis Bacillus Calmette-Guérin cultured under replicating and non-replicating conditions. THL targets α/β-hydrolases, including many lipid esterases (LipD, G, H, I, M, N, O, V, W, and TesA). Target protein concentrations and total esterase activity correlated inversely with cellular triacylglycerol upon entry into and exit from non-replicating conditions. Cellular overexpression of lipH and tesA led to decreased THL susceptibility thus providing functional validation. Our results define the target spectrum of THL in a biological species with particularly diverse lipid metabolic pathways. We furthermore derive a conceptual approach that demonstrates the use of such THL probes for the characterization of substrate recognition by lipases and related enzymes.
Journal of Lipid Research | 2017
John A. Bowden; Alan Heckert; Candice Z. Ulmer; Christina M. Jones; Jeremy P. Koelmel; Laila Abdullah; Linda Ahonen; Yazen Alnouti; Aaron M. Armando; John M. Asara; Takeshi Bamba; John R. Barr; Jonas Bergquist; Christoph H. Borchers; Joost Brandsma; Susanne B. Breitkopf; Tomas Cajka; Amaury Cazenave-Gassiot; Antonio Checa; Michelle A. Cinel; Romain A. Colas; Serge Cremers; Edward A. Dennis; James E. Evans; Alexander Fauland; Oliver Fiehn; Michael S. Gardner; Timothy J. Garrett; Katherine H. Gotlinger; Jun Han
As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950–Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra- and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium. While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement.
Journal of Biological Chemistry | 2016
Bernice H. Wong; Jia Pei Chan; Amaury Cazenave-Gassiot; Rebecca Wan-Yan Poh; Juat Chin Foo; Dwight L. A. Galam; Sujoy Ghosh; Long N. Nguyen; Veluchamy A. Barathi; Sia W. Yeo; Chi D. Luu; Markus R. Wenk; David L. Silver
Eye photoreceptor membrane discs in outer rod segments are highly enriched in the visual pigment rhodopsin and the ω-3 fatty acid docosahexaenoic acid (DHA). The eye acquires DHA from blood, but transporters for DHA uptake across the blood-retinal barrier or retinal pigment epithelium have not been identified. Mfsd2a is a newly described sodium-dependent lysophosphatidylcholine (LPC) symporter expressed at the blood-brain barrier that transports LPCs containing DHA and other long-chain fatty acids. LPC transport via Mfsd2a has been shown to be necessary for human brain growth. Here we demonstrate that Mfsd2a is highly expressed in retinal pigment epithelium in embryonic eye, before the development of photoreceptors, and is the primary site of Mfsd2a expression in the eye. Eyes from whole body Mfsd2a-deficient (KO) mice, but not endothelium-specific Mfsd2a-deficient mice, were DHA-deficient and had significantly reduced LPC/DHA transport in vivo. Fluorescein angiography indicated normal blood-retinal barrier function. Histological and electron microscopic analysis indicated that Mfsd2a KO mice exhibited a specific reduction in outer rod segment length, disorganized outer rod segment discs, and mislocalization of and reduction in rhodopsin early in postnatal development without loss of photoreceptors. Minor photoreceptor cell loss occurred in adult Mfsd2a KO mice, but electroretinography indicated visual function was normal. The developing eyes of Mfsd2a KO mice had activated microglia and up-regulation of lipogenic and cholesterogenic genes, likely adaptations to loss of LPC transport. These findings identify LPC transport via Mfsd2a as an important pathway for DHA uptake in eye and for development of photoreceptor membrane discs.
Scientific Reports | 2016
Husna Begum; Bowen Li; Guanghou Shui; Amaury Cazenave-Gassiot; Richie Soong; Rick Twee-Hee Ong; Peter Little; Yik-Ying Teo; Markus R. Wenk
Lipid levels are commonly used in clinical settings as disease biomarkers, and the advent of mass spectrometry-based (MS) lipidomics heralds the possibility of identifying additional lipids that can inform disease predispositions. However, the degree of natural variation for many lipids remains poorly understood, thus confounding downstream investigations on whether a specific intervention is driving observed lipid fluctuations. Here, we performed targeted mass spectrometry with multiple reaction monitoring across a comprehensive spectrum of 192 plasma lipids on eight subjects across three time-points separated by six hours and two standardized meals. A validation study to confirm the initial discoveries was performed in a further set of nine subjects, subject to the identical study design. Technical variation of the MS was assessed using duplicate measurements in the validation study, while biological variation was measured for lipid species with coefficients of variation <20%. We observed that eight lipid species from the phosphatidylethanolamine and phosphatidylcholine lipid classes were discovered and validated to vary consistently across the three time-points, where the within-subject variance can be up to 1.3-fold higher than between-subject variance. These findings highlight the importance of understanding the range of biological variation in plasma lipids as a precursor to their use in clinical biochemistry.
Nature | 2017
Thiet M. Vu; Ayako-Nakamura Ishizu; Juat Chin Foo; Xiu Ru Toh; Fangyu Zhang; Ding Ming Whee; Federico Torta; Amaury Cazenave-Gassiot; Takayoshi Matsumura; Sangho Kim; Sue-Anne E. S. Toh; Toshio Suda; David L. Silver; Markus R. Wenk; Long N. Nguyen
Sphingosine-1-phosphate (S1P), a potent signalling lipid secreted by red blood cells and platelets, plays numerous biologically significant roles. However, the identity of its long-sought exporter is enigmatic. Here we show that the major facilitator superfamily transporter 2b (Mfsd2b), an orphan transporter, is essential for S1P export from red blood cells and platelets. Comprehensive lipidomic analysis indicates a dramatic and specific accumulation of S1P species in Mfsd2b knockout red blood cells and platelets compared with that of wild-type controls. Consistently, biochemical assays from knockout red blood cells, platelets, and cell lines overexpressing human and mouse Mfsd2b proteins demonstrate that Mfsd2b actively exports S1P. Plasma S1P level in knockout mice is significantly reduced by 42–54% of that of wild-type level, indicating that Mfsd2b pathway contributes approximately half of the plasma S1P pool. The reduction of plasma S1P in knockout mice is insufficient to cause blood vessel leakiness, but it does render the mice more sensitive to anaphylactic shock. Stress-induced erythropoiesis significantly increased plasma S1P levels and knockout mice were sensitive to these treatments. Surprisingly, knockout mice exhibited haemolysis associated with red blood cell stomatocytes, and the haemolytic phenotype was severely increased with signs of membrane fragility under stress erythropoiesis. We show that S1P secretion by Mfsd2b is critical for red blood cell morphology. Our data reveal an unexpected physiological role of red blood cells in sphingolipid metabolism in circulation. These findings open new avenues for investigating the signalling roles of S1P derived from red blood cells and platelets.
Sleep | 2015
Eric Chern-Pin Chua; Guanghou Shui; Amaury Cazenave-Gassiot; Markus R. Wenk; Joshua J. Gooley
STUDY OBJECTIVES The effects of sleep loss on plasma lipids, which play an important role in energy homeostasis and signaling, have not been systematically examined. Our aim was to identify lipid species in plasma that increase or decrease reliably during exposure to total sleep deprivation. DESIGN Twenty individuals underwent sleep deprivation in a laboratory setting. Blood was drawn every 4 h and mass spectrometry techniques were used to analyze concentrations of 263 lipid species in plasma, including glycerolipids, glycerophospholipids, sphingolipids, and sterols. SETTING Chronobiology and Sleep Laboratory, Duke-NUS Graduate Medical School. PARTICIPANTS Healthy ethnic-Chinese males aged 21-28 y (n = 20). INTERVENTIONS Subjects were kept awake for 40 consecutive hours. MEASUREMENTS AND RESULTS Each metabolite time series was modeled as a sum of sinusoidal (circadian) and linear components, and we assessed whether the slope of the linear component differed from zero. More than a third of all individually analyzed lipid profiles exhibited a circadian rhythm and/or a linear change in concentration during sleep deprivation. Twenty-five lipid species showed a linear and predominantly unidirectional trend in concentration levels that was consistent across participants. Choline plasmalogen levels decreased, whereas several phosphatidylcholine (PC) species and triacylglycerides (TAG) carrying polyunsaturated fatty acids increased. CONCLUSIONS The decrease in choline plasmalogen levels during sleep deprivation is consistent with prior work demonstrating that these lipids are susceptible to degradation by oxidative stress. The increase in phosphatidylcholines and triacylglycerides suggests that sleep loss might modulate lipid metabolism, which has potential implications for metabolic health in individuals who do not achieve adequate sleep.
Journal of Lipid Research | 2013
Conrad En Zuo Chan; Bryan Z. Zhao; Amaury Cazenave-Gassiot; Shyue-Wei Pang; Anne K. Bendt; Markus R. Wenk; Paul A. MacAry; Brendon J. Hanson
Tuberculosis is a major cause of mortality and morbidity due to infectious disease. However, current clinical diagnostic methodologies such as PCR, sputum culture, or smear microscopy are not ideal. Antibody-based assays are a suitable alternative but require specific antibodies against a suitable biomarker. Mycolic acid, which has been found in patient sputum samples and comprises a large portion of the mycobacterial cell wall, is an ideal target. However, generating anti-lipid antibodies using traditional hybridoma methodologies is challenging and has limited the exploitation of this lipid as a diagnostic marker. We describe here the isolation and characterization of four anti-mycolic acid antibodies from a nonimmune antibody phage display library that can detect mycolic acids down to a limit of 4.5ng. All antibodies were specific for the methoxy subclass of mycolic acid with weak binding for α mycolic acid and did not show any binding to closely related lipids or other Mycobacterium tuberculosis (Mtb) derived lipids. We also determined the clinical utility of these antibodies based on their limit of detection for mycobacteria colony forming units (CFU). In combination with an optimized alkaline hydrolysis method for rapid lipid extraction, these antibodies can detect 105 CFU of Mycobacterium bovis BCG, a close relative of Mtb and therefore represent a novel approach for the development of diagnostic assays for lipid biomarkers.