Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amaury Ernesto Fernandez-Montalvan is active.

Publication


Featured researches published by Amaury Ernesto Fernandez-Montalvan.


Epigenomics | 2015

Targeting BET bromodomains for cancer treatment

Marie Jung; Kathy A. Gelato; Amaury Ernesto Fernandez-Montalvan; Stephan Siegel; Bernard Haendler

The bromodomain and extraterminal (BET) subfamily of bromodomain-containing proteins has emerged in the last few years as an exciting, novel target group. BRD4, the best studied BET protein, is implicated in a number of hematological and solid tumors. This is linked to its role in modulating transcription elongation of essential genes involved in cell cycle and apoptosis such as c-Myc and BCL2. Potent BET inhibitors with promising antitumor efficacy in a number of preclinical cancer models have been identified in recent years. This led to clinical studies focusing mostly on the treatment of leukemia and lymphoma, and first encouraging signs of efficacy have already been reported. Here we discuss the biology of BRD4, its known interaction partners and implication in different tumor types. Further, we summarize the current knowledge on BET bromodomain inhibitors.


Journal of Biological Chemistry | 2014

Affinity Map of Bromodomain Protein 4 (BRD4) Interactions with the Histone H4 Tail and the Small Molecule Inhibitor JQ1

Marie Jung; Martin Philpott; Susanne Müller; Jessica Schulze; Volker Badock; Uwe Eberspächer; Dieter Moosmayer; Benjamin Bader; Norbert Schmees; Amaury Ernesto Fernandez-Montalvan; Bernard Haendler

Background: BRD4 is a reader of acetylated histones. Results: Mutational analysis of BRD4 BD1 allowed the identification of three groups with different binding profiles. Conclusion: Pro-82, Leu-94, Asp-145, and Ile-146 have a differentiated role in acetyl-lysine and inhibitor interaction. Significance: Identification of residues essential for BRD4 function will guide the design of novel inhibitors. Bromodomain protein 4 (BRD4) is a member of the bromodomain and extra-terminal domain (BET) protein family. It binds to acetylated histone tails via its tandem bromodomains BD1 and BD2 and forms a complex with the positive transcription elongation factor b, which controls phosphorylation of RNA polymerase II, ultimately leading to stimulation of transcription elongation. An essential role of BRD4 in cell proliferation and cancer growth has been reported in several recent studies. We analyzed the binding of BRD4 BD1 and BD2 to different partners and showed that the strongest interactions took place with di- and tetra-acetylated peptides derived from the histone 4 N-terminal tail. We also found that several histone 4 residues neighboring the acetylated lysines significantly influenced binding. We generated 10 different BRD4 BD1 mutants and analyzed their affinities to acetylated histone tails and to the BET inhibitor JQ1 using several complementary biochemical and biophysical methods. The impact of these mutations was confirmed in a cellular environment. Altogether, the results show that Trp-81, Tyr-97, Asn-140, and Met-149 play similarly important roles in the recognition of acetylated histones and JQ1. Pro-82, Leu-94, Asp-145, and Ile-146 have a more differentiated role, suggesting that different kinds of interactions take place and that resistance mutations compatible with BRD4 function are possible. Our study extends the knowledge on the contribution of individual BRD4 amino acids to histone and JQ1 binding and may help in the design of new BET antagonists with improved pharmacological properties.


Analytical Biochemistry | 2015

A universal homogeneous assay for high-throughput determination of binding kinetics

Felix Schiele; Pelin Ayaz; Amaury Ernesto Fernandez-Montalvan

There is an increasing demand for assay technologies that enable accurate, cost-effective, and high-throughput measurements of drug-target association and dissociation rates. Here we introduce a universal homogeneous kinetic probe competition assay (kPCA) that meets these requirements. The time-resolved fluorescence energy transfer (TR-FRET) procedure combines the versatility of radioligand binding assays with the advantages of homogeneous nonradioactive techniques while approaching the time resolution of surface plasmon resonance (SPR) and related biosensors. We show application of kPCA for three important target classes: enzymes, protein-protein interactions, and G protein-coupled receptors (GPCRs). This method is capable of supporting early stages of drug discovery with large amounts of kinetic information.


Journal of Biomolecular Screening | 2015

Cell-Based Protein Stabilization Assays for the Detection of Interactions between Small-Molecule Inhibitors and BRD4

Jessica Schulze; Dieter Moosmayer; Joerg Weiske; Amaury Ernesto Fernandez-Montalvan; Christopher Herbst; Marie Jung; Bernard Haendler; Benjamin Bader

Bromodomain protein 4 (BRD4), a member of the bromodomain and extra-terminal (BET) protein family, acts as a central element in transcriptional elongation and plays essential roles in cell proliferation. Inhibition of BRD4 binding to acetylated histone tails via its two bromodomains, BD1 and BD2, with small-molecule inhibitors has been shown to be a valid strategy to prevent cancer growth. We have evaluated and established two novel assays that quantify the interaction of transfected BRD4 BD1 with chemical inhibitors inside cultured cells. Both methods are based on the principle of ligand-induced protein stabilization by which the binding of a small-molecule inhibitor stabilizes intracellular BRD4 BD1 and protects it from proteolytic degradation. We demonstrate the universal character of this principle by using two orthogonal, highly sensitive detection technologies for the quantification of BRD4 BD1 levels in cellular lysates: enzyme fragment complementation and time-resolved fluorescence resonance energy transfer (TR-FRET). Upon optimization of both assays to a miniaturized high-throughput format, the methods were validated by testing a set of small-molecule BET inhibitors and comparing the results with those from a cell-free binding assay and a biophysical thermal shift assay. In addition, point mutations were introduced into BRD4 BD1, and the corresponding mutants were characterized in the TR-FRET stabilization assay.


Journal of Medicinal Chemistry | 2016

Discovery and Characterization of a Highly Potent and Selective Aminopyrazoline-Based in Vivo Probe (BAY-598) for the Protein Lysine Methyltransferase SMYD2

Erik Eggert; Roman Hillig; Silke Koehr; Detlef Stöckigt; Jörg Weiske; Naomi Barak; Jeffrey Mowat; Thomas Brumby; Clara D. Christ; Antonius ter Laak; Tina Lang; Amaury Ernesto Fernandez-Montalvan; Volker Badock; Hilmar Weinmann; Ingo V. Hartung; Dalia Barsyte-Lovejoy; Magdalena M. Szewczyk; Steven Kennedy; Fengling Li; Masoud Vedadi; Peter J. Brown; V. Santhakumar; C.H. Arrowsmith; Timo Stellfeld; Carlo Stresemann

Protein lysine methyltransferases have recently emerged as a new target class for the development of inhibitors that modulate gene transcription or signaling pathways. SET and MYND domain containing protein 2 (SMYD2) is a catalytic SET domain containing methyltransferase reported to monomethylate lysine residues on histone and nonhistone proteins. Although several studies have uncovered an important role of SMYD2 in promoting cancer by protein methylation, the biology of SMYD2 is far from being fully understood. Utilization of highly potent and selective chemical probes for target validation has emerged as a concept which circumvents possible limitations of knockdown experiments and, in particular, could result in an improved exploration of drug targets with a complex underlying biology. Here, we report the development of a potent, selective, and cell-active, substrate-competitive inhibitor of SMYD2, which is the first reported inhibitor suitable for in vivo target validation studies in rodents.


Oncotarget | 2016

ATAD2 is an epigenetic reader of newly synthesized histone marks during DNA replication.

Seong Joo Koo; Amaury Ernesto Fernandez-Montalvan; Volker Badock; Christopher J. Ott; Simon Holton; Oliver von Ahsen; J Toedling; Sarah Vittori; James E. Bradner; Mátyás Gorjánácz

ATAD2 (ATPase family AAA domain-containing protein 2) is a chromatin regulator harboring an AAA+ ATPase domain and a bromodomain, previously proposed to function as an oncogenic transcription co-factor. Here we suggest that ATAD2 is also required for DNA replication. ATAD2 is co-expressed with genes involved in DNA replication in various cancer types and predominantly expressed in S phase cells where it localized on nascent chromatin (replication sites). Our extensive biochemical and cellular analyses revealed that ATAD2 is recruited to replication sites through a direct interaction with di-acetylated histone H4 at K5 and K12, indicative of newly synthesized histones during replication-coupled chromatin reassembly. Similar to ATAD2-depletion, ectopic expression of ATAD2 mutants that are deficient in binding to these di-acetylation marks resulted in reduced DNA replication and impaired loading of PCNA onto chromatin, suggesting relevance of ATAD2 in DNA replication. Taken together, our data show a novel function of ATAD2 in cancer and for the first time identify a reader of newly synthesized histone di-acetylation-marks during replication.


ACS Chemical Biology | 2017

Isoform-Selective ATAD2 Chemical Probe with Novel Chemical Structure and Unusual Mode of Action

Amaury Ernesto Fernandez-Montalvan; Markus Berger; Benno Kuropka; Seong Joo Koo; Volker Badock; Joerg Weiske; Vera Puetter; Simon Holton; Detlef Stöckigt; Antonius ter Laak; Paolo A. Centrella; Matthew A. Clark; Christoph E. Dumelin; Eric A. Sigel; Holly H. Soutter; Dawn M. Troast; Ying Zhang; John W. Cuozzo; Anthony D. Keefe; Didier Roche; Vincent Rodeschini; A. Chaikuad; Laura Díaz-Sáez; James M. Bennett; Oleg Fedorov; Kilian Huber; Jan Hübner; Hilmar Weinmann; Ingo V. Hartung; Matyas Gorjanacz

ATAD2 (ANCCA) is an epigenetic regulator and transcriptional cofactor, whose overexpression has been linked to the progress of various cancer types. Here, we report a DNA-encoded library screen leading to the discovery of BAY-850, a potent and isoform selective inhibitor that specifically induces ATAD2 bromodomain dimerization and prevents interactions with acetylated histones in vitro, as well as with chromatin in cells. These features qualify BAY-850 as a chemical probe to explore ATAD2 biology.


Journal of Medicinal Chemistry | 2017

Benzoisoquinolinediones as Potent and Selective Inhibitors of BRPF2 and TAF1/TAF1L Bromodomains

Léa Bouché; Clara D. Christ; Stephan Siegel; Amaury Ernesto Fernandez-Montalvan; Simon Holton; Oleg Fedorov; Antonius ter Laak; Tatsuo Sugawara; Detlef Stöckigt; Cynthia Tallant; Jim Bennett; Octovia P. Monteiro; Laura Díaz-Sáez; Paulina Siejka; Julia Meier; Vera Pütter; Jörg Weiske; Susanne Müller; Kilian Huber; Ingo V. Hartung; Bernard Haendler

Bromodomains (BD) are readers of lysine acetylation marks present in numerous proteins associated with chromatin. Here we describe a dual inhibitor of the bromodomain and PHD finger (BRPF) family member BRPF2 and the TATA box binding protein-associated factors TAF1 and TAF1L. These proteins are found in large chromatin complexes and play important roles in transcription regulation. The substituted benzoisoquinolinedione series was identified by high-throughput screening, and subsequent structure–activity relationship optimization allowed generation of low nanomolar BRPF2 BD inhibitors with strong selectivity against BRPF1 and BRPF3 BDs. In addition, a strong inhibition of TAF1/TAF1L BD2 was measured for most derivatives. The best compound of the series was BAY-299, which is a very potent, dual inhibitor with an IC50 of 67 nM for BRPF2 BD, 8 nM for TAF1 BD2, and 106 nM for TAF1L BD2. Importantly, no activity was measured for BRD4 BDs. Furthermore, cellular activity was evidenced using a BRPF2– or TAF1–histone H3.3 or H4 interaction assay.


Journal of the American Chemical Society | 2018

Binding Kinetics Survey of the Drugged Kinome

Victoria Georgi; Felix Schiele; Benedict-Tilman Berger; Andreas Steffen; Paula A. Zapata; Hans Briem; Stephan Menz; Cornelia Preuße; James D. Vasta; Matthew B. Robers; Michael Brands; Stefan Knapp; Amaury Ernesto Fernandez-Montalvan

Target residence time is emerging as an important optimization parameter in drug discovery, yet target and off-target engagement dynamics have not been clearly linked to the clinical performance of drugs. Here we developed high-throughput binding kinetics assays to characterize the interactions of 270 protein kinase inhibitors with 40 clinically relevant targets. Analysis of the results revealed that on-rates are better correlated with affinity than off-rates and that the fraction of slowly dissociating drug-target complexes increases from early/preclinical to late stage and FDA-approved compounds, suggesting distinct contributions by each parameter to clinical success. Combining binding parameters with PK/ADME properties, we illustrate in silico and in cells how kinetic selectivity could be exploited as an optimization strategy. Furthermore, using bio- and chemoinformatics we uncovered structural features influencing rate constants. Our results underscore the value of binding kinetics information in rational drug design and provide a resource for future studies on this subject.


Cancer Research | 2017

Abstract 5239: Probing the cancer epigenome: empowering target validation by open innovation

Ingo V. Hartung; C.H. Arrowsmith; Volker Badock; Naomi Barak; Markus Berger; Peter J. Brown; Clara D. Christ; Erik Eggert; Ursula Egner; Oleg Fedorov; Amaury Ernesto Fernandez-Montalvan; Matyas Gorjanacz; Andrea Haegebarth; Bernard Haendler; Roman Hillig; Simon Holton; Kilian Huber; Seong Joo Koo; Antonius ter Laak; Susanne Mueller; Anke Mueller-Fahrnow; Cora Scholten; Stephan Siegel; Timo Stellfeld; Detlef Stoeckigt; Carlo Stresemann; Masoud Vedadi; Joerg Weiske; Hilmar Weinmann

Low reproducibility of published target validation studies as well as the frequent failure of genetic knock-down effects to phenocopy those of small molecule inhibitors have been recognized as road blocks for cancer drug discovery. Academic and industrial institutions have started to address these issues by providing access to high quality small molecular probes for novel targets of interest. Here we discuss probe discovery challenges and quality criteria based on the generation of three novel inhibitors for epigenetic targets. ATAD2 (ATPase family AAA-domain containing protein 2) is an epigenetic regulator that binds to chromatin through its bromodomain (BD). ATAD2 has been proposed to act as a co-factor for oncogenic transcription factors such as ERα and Myc. A more thorough validation of ATAD2 as a therapeutic target has been hampered by the lack of appropriate ATAD2 inhibitors. Here we disclose a structurally unprecedented series of ATAD2 BD inhibitors identified from a DNA-encoded library screen. Optimization delivered BAY-850, a highly potent and exceptionally selective ATAD2 BD inhibitor, which fully recapitulates effects seen by genetic mutagenesis studies in a cellular assay. The three BD and PHD-finger (BRPF) family members are found in histone acetyltransferase complexes. Whereas bromodomain inhibitors with dual activity against BRPF1 and 2 have been described before, we now disclose BAY-299, the first nanomolar inhibitor of the BRPF2 BD with high selectivity against its paralogs. Isoform selectivity was confirmed in cellular protein-protein interaction assays and rationalized based on X-Ray structures. BAY-598, a highly selective, cellularly active and orally bioavailable inhibitor of the protein lysine methyl transferase SMYD2, had been disclosed previously (Stresemann et al., AACR 2015). Development of BAY-598 allowed the identification of new methylation targets of SMYD2 as well as a proposed role of SMYD2 in pancreatic cancer. These results support further development of small molecule inhibitors as research tools to probe the functional role of novel epigenetic targets and underscore the power of open innovation for advancing our understanding of cancer target biology. Citation Format: Ingo V. Hartung, Cheryl Arrowsmith, Volker Badock, Naomi Barak, Markus Berger, Peter J. Brown, Clara D. Christ, Erik Eggert, Ursula Egner, Oleg Fedorov, Amaury E. Fernandez-Montalvan, Matyas Gorjanacz, Andrea Haegebarth, Bernard Haendler, Roman C. Hillig, Simon H. Holton, Kilian V. Huber, Seong J. Koo, Antonius ter Laak, Susanne Mueller, Anke Mueller-Fahrnow, Cora Scholten, Stephan Siegel, Timo Stellfeld, Detlef Stoeckigt, Carlo Stresemann, Masoud Vedadi, Joerg Weiske, Hilmar Weinmann. Probing the cancer epigenome: empowering target validation by open innovation [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 5239. doi:10.1158/1538-7445.AM2017-5239

Collaboration


Dive into the Amaury Ernesto Fernandez-Montalvan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Holton

Bayer HealthCare Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Detlef Stöckigt

Bayer HealthCare Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge