Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amaya Azqueta is active.

Publication


Featured researches published by Amaya Azqueta.


Archives of Toxicology | 2013

The essential comet assay: a comprehensive guide to measuring DNA damage and repair.

Amaya Azqueta; Andrew R. Collins

The comet assay (single cell gel electrophoresis) is the most common method for measuring DNA damage in eukaryotic cells or disaggregated tissues. The assay depends on the relaxation of supercoiled DNA in agarose-embedded nucleoids (the residual bodies remaining after lysis of cells with detergent and high salt), which allows the DNA to be drawn out towards the anode under electrophoresis, forming comet-like images as seen under fluorescence microscopy. The relative amount of DNA in the comet tail indicates DNA break frequency. The assay has been modified to detect various base alterations, by including digestion of nucleoids with a lesion-specific endonuclease. We describe here recent technical developments, theoretical aspects, limitations as well as advantages of the assay, and modifications to measure cellular antioxidant status and different types of DNA repair. We briefly describe the applications of this method in genotoxicity testing, human biomonitoring, and ecogenotoxicology.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2009

DNA oxidation : Investigating its key role in environmental mutagenesis with the comet assay

Amaya Azqueta; Sergey Shaposhnikov; Andrew R. Collins

DNA oxidation, which can have potentially serious mutagenic consequences, commonly accompanies exposure to environmental mutagens. Oxidised bases can be measured chromatographically, but spurious oxidation during sample preparation leads to serious over-estimation of low levels of damage. A more reliable approach is to employ endonucleases specific for oxidised bases, to introduce breaks in cellular DNA that are then most commonly measured using the comet assay (alkaline single cell gel electrophoresis). The two enzymes in general use are formamidopyrimidine DNA glycosylase, which detects primarily 8-oxo-7,8-dihydroguanine (8-oxoGua), and endonuclease III which recognises oxidised pyrimidines. We give a brief account of the recommended experimental procedures, and then describe applications in various areas of environmental research. Cultured cell lines or white blood cells have been exposed to a range of environmental mutagens, including natural products, industrial chemicals, radiation and nanoparticles. In vivo exposure of animals and humans to pollutants is more challenging but can give particularly valuable information in relation to real life exposure. Possibly the most useful application is in biomonitoring of human population groups suffering actual exposure to environmental or occupational mutagens. Finally, the potential use of this technique to monitor effects of contaminants in the natural environment has yet to be fully exploited.


Mutagenesis | 2010

Variation in the measurement of DNA damage by comet assay measured by the ECVAG inter-laboratory validation trial

Lykke Forchhammer; Clara Johansson; Steffen Loft; Lennart Möller; Roger W. L. Godschalk; Sabine A.S. Langie; George D. D. Jones; Rachel W. L. Kwok; Andrew R. Collins; Amaya Azqueta; David H. Phillips; Osman Sozeri; Maciej Stępnik; Jadwiga Palus; Ulla Vogel; Håkan Wallin; Michael N. Routledge; Catherine Handforth; Alessandra Allione; Giuseppe Matullo; João Paulo Teixeira; Solange Costa; Patrizia Riso; Marisa Porrini; Peter Møller

The comet assay has become a popular method for the assessment of DNA damage in biomonitoring studies and genetic toxicology. However, few studies have addressed the issue of the noted inter-laboratory variability of DNA damage measured by the comet assay. In this study, 12 laboratories analysed the level of DNA damage in monocyte-derived THP-1 cells by either visual classification or computer-aided image analysis of pre-made slides, coded cryopreserved samples of cells and reference standard cells (calibration curve samples). The reference standard samples were irradiated with ionizing radiation (0-10 Gy) and used to construct a calibration curve to calculate the number of lesions per 10(6) base pair. All laboratories detected dose-response relationships in the coded samples irradiated with ionizing radiation (1.5-7 Gy), but there were overt differences in the level of DNA damage reported by the different laboratories as evidenced by an inter-laboratory coefficient of variation (CV) of 47%. Adjustment of the primary comet assay end points by a calibration curve prepared in each laboratory reduced the CV to 28%, a statistically significant reduction (P < 0.05, Levenes test). A large fraction of the inter-laboratory variation originated from differences in image analysis, whereas the intra-laboratory variation was considerably smaller than the variation between laboratories. In summary, adjustment of primary comet assay results by reference standards reduces inter-laboratory variation in the level of DNA damage measured by the alkaline version of the comet assay.


Mutagenesis | 2010

An ECVAG trial on assessment of oxidative damage to DNA measured by the comet assay

Clara Johansson; Peter Møller; Lykke Forchhammer; Steffen Loft; Roger W. L. Godschalk; Sabine A.S. Langie; Stijn Lumeij; George D. D. Jones; Rachel W. L. Kwok; Amaya Azqueta; David H. Phillips; Osman Sozeri; Michael N. Routledge; Alexander J. Charlton; Patrizia Riso; Marisa Porrini; Alessandra Allione; Giuseppe Matullo; Jadwiga Palus; Maciej Stępnik; Andrew R. Collins; Lennart Möller

The increasing use of single cell gel electrophoresis (the comet assay) highlights its popularity as a method for detecting DNA damage, including the use of enzymes for assessment of oxidatively damaged DNA. However, comparison of DNA damage levels between laboratories can be difficult due to differences in assay protocols (e.g. lysis conditions, enzyme treatment, the duration of the alkaline treatment and electrophoresis) and in the end points used for reporting results (e.g. %DNA in tail, arbitrary units, tail moment and tail length). One way to facilitate comparisons is to convert primary comet assay end points to number of lesions/106 bp by calibration with ionizing radiation. The aim of this study was to investigate the inter-laboratory variation in assessment of oxidatively damaged DNA by the comet assay in terms of oxidized purines converted to strand breaks with formamidopyrimidine DNA glycosylase (FPG). Coded samples with DNA oxidation damage induced by treatment with different concentrations of photosensitizer (Ro 19-8022) plus light and calibration samples irradiated with ionizing radiation were distributed to the 10 participating laboratories to measure DNA damage using their own comet assay protocols. Nine of 10 laboratories reported the same ranking of the level of damage in the coded samples. The variation in assessment of oxidatively damaged DNA was largely due to differences in protocols. After conversion of the data to lesions/106 bp using laboratory-specific calibration curves, the variation between the laboratories was reduced. The contribution of the concentration of photosensitizer to the variation in net FPG-sensitive sites increased from 49 to 73%, whereas the inter-laboratory variation decreased. The participating laboratories were successful in finding a dose–response of oxidatively damaged DNA in coded samples, but there remains a need to standardize the protocols to enable direct comparisons between laboratories.


Carcinogenesis | 2009

Effect of processed and red meat on endogenous nitrosation and DNA damage

Annemiek M. C. P. Joosen; Gunter Georg Kuhnle; Sue M. Aspinall; Timothy M. Barrow; Emmanuelle Lecommandeur; Amaya Azqueta; Andrew R. Collins; Sheila Bingham

Haem in red meat (RM) stimulates the endogenous production of mutagenic nitroso compounds (NOC). Processed (nitrite-preserved red) meat additionally contains high concentrations of preformed NOC. In two studies, of a fresh RM versus a vegetarian (VEG) diet (six males and six females) and of a nitrite-preserved red meat (PM) versus a VEG diet (5 males and 11 females), we investigated whether processing of meat might increase colorectal cancer risk by stimulating nitrosation and DNA damage. Meat diets contained 420 g (males) or 366 g (females) meat/per day. Faecal homogenates from day 10 onwards were analysed for haem and NOC and associated supernatants for genotoxicity. Means are adjusted for differences in male to female ratios between studies. Faecal NOC concentrations on VEG diets were low (2.6 and 3.5 mmol/g) but significantly higher on meat diets (PM 175 ± 19 nmol/g versus RM 185 ± 22 nmol/g; P = 0.75). The RM diet resulted in a larger proportion of nitrosyl iron (RM 78% versus PM 54%; P < 0.0001) and less nitrosothiols (RM 12% versus PM 19%; P < 0.01) and other NOC (RM 10% versus PM 27%; P < 0.0001). There was no statistically significant difference in DNA breaks induced by faecal water (FW) following PM and RM diets (P = 0.80). However, PM resulted in higher levels of oxidized pyrimidines (P < 0.05). Surprisingly, VEG diets resulted in significantly more FW-induced DNA strand breaks than the meat diets (P < 0.05), which needs to be clarified in further studies. Meats cured with nitrite have the same effect as fresh RM on endogenous nitrosation but show increased FW-induced oxidative DNA damage.


Mutation Research | 2012

DNA repair as a biomarker in human biomonitoring studies; further applications of the comet assay.

Andrew R. Collins; Amaya Azqueta

DNA repair plays a major role in maintaining genetic stability, and so measurement of individual DNA repair capacity should be a valued tool in molecular epidemiology studies. The comet assay (single cell gel electrophoresis), in different versions, is commonly used to measure the repair pathways represented by strand break rejoining, removal of 8-oxoguanine, and repair of bulky adducts or UV-induced damage. Repair enzyme activity generally does not reflect the level of gene expression; but there is evidence - albeit piecemeal - that it is affected by polymorphisms in repair genes. There are mixed reports concerning the regulation of repair by environmental factors; several nutritional supplementation trials with phytochemical-rich foods have demonstrated increases in base excision repair of oxidation damage, while others have shown no effect. Exposure to genotoxic agents has in general not been found to stimulate repair. Crucial questions concerning the factors regulating repair and the causes of individual variation are as yet unanswered.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2011

Towards a more reliable comet assay: Optimising agarose concentration, unwinding time and electrophoresis conditions

Amaya Azqueta; Kristine B. Gutzkow; Gunnar Brunborg; Andrew R. Collins

The comet assay is now the method of choice for measuring most kinds of DNA damage in cells. However, due to the lack of a standardised protocol inter-laboratory comparisons are of limited value. The aim of this paper is to demonstrate how small changes in comet-assay variables may significantly affect the results. We examined the effect of varying agarose concentrations, alkaline unwinding time, electrophoresis time, voltage and current, by use of two cell types, viz. human peripheral blood lymphocytes and the lymphoblastoid cell line TK-6. All these variables have marked effects on assay performance and, therefore, on the determination of DNA damage. Here we identify factors of particular importance.


Mutagenesis | 2011

The influence of scoring method on variability in results obtained with the comet assay

Amaya Azqueta; Silja Meier; Catherine C. Priestley; Kristine B. Gutzkow; Gunnar Brunborg; Jérôme Sallette; Francoise Soussaline; Andrew R. Collins

As part of a project to develop high throughput versions of the comet assay (single cell gel electrophoresis), with a consequent need for more efficient scoring, we have compared the performance of visual scoring, automated and semi-automated image analysis when assessing comets in the same set of gels from dose-response experiments with typical DNA-damaging agents. Human lymphoblastoid TK-6 cells were treated with concentrations of methylmethanesulphonate between 0.04 and 0.6 mM, and peripheral human lymphocytes were incubated, after embedding in agarose, with H(2)O(2) concentrations from 2.5 to 160 μM. All three scoring methods proved capable of detecting a significant level of damage at the lowest concentration of each agent. Visual scoring systematically overestimates low levels of damage compared with computerised image analysis; on the other hand, heavily damaged comets are less efficiently detected with image analysis. Overall, the degree of agreement between the scoring methods is within acceptable limits according to a Bland-Altman analysis.


Frontiers in Genetics | 2014

Comet assay to measure DNA repair: approach and applications

Amaya Azqueta; Jana Slyskova; Sabine A.S. Langie; Isabel Gaivão; Andrew R. Collins

Cellular repair enzymes remove virtually all DNA damage before it is fixed; repair therefore plays a crucial role in preventing cancer. Repair studied at the level of transcription correlates poorly with enzyme activity, and so assays of phenotype are needed. In a biochemical approach, substrate nucleoids containing specific DNA lesions are incubated with cell extract; repair enzymes in the extract induce breaks at damage sites; and the breaks are measured with the comet assay. The nature of the substrate lesions defines the repair pathway to be studied. This in vitro DNA repair assay has been modified for use in animal tissues, specifically to study the effects of aging and nutritional intervention on repair. Recently, the assay was applied to different strains of Drosophila melanogaster proficient and deficient in DNA repair. Most applications of the repair assay have been in human biomonitoring. Individual DNA repair activity may be a marker of cancer susceptibility; alternatively, high repair activity may result from induction of repair enzymes by exposure to DNA-damaging agents. Studies to date have examined effects of environment, nutrition, lifestyle, and occupation, in addition to clinical investigations.


Toxicology Letters | 2010

Twelve-gel slide format optimised for comet assay and fluorescent in situ hybridisation

Sergey Shaposhnikov; Amaya Azqueta; Sara Henriksson; Silja Meier; Isabel Gaivão; Neville H. Huskisson; Andrew Smart; Gunnar Brunborg; Mats Nilsson; Andrew R. Collins

The comet assay is widely used to measure DNA damage and repair in basic research, genotoxicity testing and human biomonitoring. The conventional format has 1 or 2 gels on a microscope slide, 1 sample per slide. To increase throughput, we have designed and tested a system with 12 smaller gels on one slide, allowing incubation of individual gels with different reagents or enzymes. Thus several times more samples can be analysed with one electrophoresis run, and fewer cells and smaller volumes of test solutions are required. Applications of the modified method include treatment with genotoxic agents at different concentrations; simultaneous analysis of different lesions using a range of enzymes; analysis of cell extracts for DNA repair activity; and fluorescent in situ hybridisation (FISH) to comet DNA with specific labelled probes.

Collaboration


Dive into the Amaya Azqueta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabine A.S. Langie

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

Gunnar Brunborg

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steffen Loft

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge