Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amaya Blanco-Rivero is active.

Publication


Featured researches published by Amaya Blanco-Rivero.


Molecular & Cellular Proteomics | 2006

Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii

Maria V. Turkina; Joanna Kargul; Amaya Blanco-Rivero; Arsenio Villarejo; James Barber; Alexander V. Vener

Mapping of in vivo protein phosphorylation sites in photosynthetic membranes of the green alga Chlamydomonas reinhardtii revealed that the major environmentally dependent changes in phosphorylation are clustered at the interface between the photosystem II (PSII) core and its light-harvesting antennae (LHCII). The photosynthetic membranes that were isolated form the algal cells exposed to four distinct environmental conditions affecting photosynthesis: (i) dark aerobic, corresponding to photosynthetic State 1; (ii) dark under nitrogen atmosphere, corresponding to photosynthetic State 2; (iii) moderate light; and (iv) high light. The surface-exposed phosphorylated peptides were cleaved from the membrane by trypsin, methyl-esterified, enriched by immobilized metal affinity chromatography, and sequenced by nanospray-quadrupole time-of-flight mass spectrometry. A total of 19 in vivo phosphorylation sites were mapped in the proteins corresponding to 15 genes in C. reinhardtii. Amino-terminal acetylation of seven proteins was concomitantly determined. Sequenced amino termini of six mature LHCII proteins differed from the predicted ones. The State 1-to-State 2 transition induced phosphorylation of the PSII core components D2 and PsbR and quadruple phosphorylation of a minor LHCII antennae subunit, CP29, as well as phosphorylation of constituents of a major LHCII complex, Lhcbm1 and Lhcbm10. Exposure of the algal cells to either moderate or high light caused additional phosphorylation of the D1 and CP43 proteins of the PSII core. The high light treatment led to specific hyperphosphorylation of CP29 at seven distinct residues, phosphorylation of another minor LHCII constituent, CP26, at a single threonine, and double phosphorylation of additional subunits of a major LHCII complex including Lhcbm4, Lhcbm6, Lhcbm9, and Lhcbm11. Environmentally induced protein phosphorylation at the interface of PSII core and the associated antenna proteins, particularly multiple differential phosphorylations of CP29 linker protein, suggests the mechanisms for control of photosynthetic state transitions and for LHCII uncoupling from PSII under high light stress to allow thermal energy dissipation.


PLOS ONE | 2011

Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1) in Arabidopsis thaliana

Stefan Burén; Cristina Ortega-Villasante; Amaya Blanco-Rivero; Andrea Martínez-Bernardini; Tatiana Shutova; Dmitriy Shevela; Johannes Messinger; László Bakó; Arsenio Villarejo; Göran Samuelsson

Background The Arabidopsis CAH1 alpha-type carbonic anhydrase is one of the few plant proteins known to be targeted to the chloroplast through the secretory pathway. CAH1 is post-translationally modified at several residues by the attachment of N-glycans, resulting in a mature protein harbouring complex-type glycans. The reason of why trafficking through this non-canonical pathway is beneficial for certain chloroplast resident proteins is not yet known. Therefore, to elucidate the significance of glycosylation in trafficking and the effect of glycosylation on the stability and function of the protein, epitope-labelled wild type and mutated versions of CAH1 were expressed in plant cells. Methodology/Principal Findings Transient expression of mutant CAH1 with disrupted glycosylation sites showed that the protein harbours four, or in certain cases five, N-glycans. While the wild type protein trafficked through the secretory pathway to the chloroplast, the non-glycosylated protein formed aggregates and associated with the ER chaperone BiP, indicating that glycosylation of CAH1 facilitates folding and ER-export. Using cysteine mutants we also assessed the role of disulphide bridge formation in the folding and stability of CAH1. We found that a disulphide bridge between cysteines at positions 27 and 191 in the mature protein was required for correct folding of the protein. Using a mass spectrometric approach we were able to measure the enzymatic activity of CAH1 protein. Under circumstances where protein N-glycosylation is blocked in vivo, the activity of CAH1 is completely inhibited. Conclusions/Significance We show for the first time the importance of post-translational modifications such as N-glycosylation and intramolecular disulphide bridge formation in folding and trafficking of a protein from the secretory pathway to the chloroplast in higher plants. Requirements for these post-translational modifications for a fully functional native protein explain the need for an alternative route to the chloroplast.


Molecular & Cellular Proteomics | 2013

Exploring the N-glycosylation Pathway in Chlamydomonas reinhardtii Unravels Novel Complex Structures

Elodie Mathieu-Rivet; Martin Scholz; Carolina Arias; Flavien Dardelle; Stefan Schulze; François Le Mauff; Gavin Teo; Ana Karina Hochmal; Amaya Blanco-Rivero; Corinne Loutelier-Bourhis; Marie-Christine Kiefer-Meyer; Christian Fufezan; Carole Burel; Patrice Lerouge; Flor Martínez; Muriel Bardor; Michael Hippler

Chlamydomonas reinhardtii is a green unicellular eukaryotic model organism for studying relevant biological and biotechnological questions. The availability of genomic resources and the growing interest in C. reinhardtii as an emerging cell factory for the industrial production of biopharmaceuticals require an in-depth analysis of protein N-glycosylation in this organism. Accordingly, we used a comprehensive approach including genomic, glycomic, and glycoproteomic techniques to unravel the N-glycosylation pathway of C. reinhardtii. Using mass-spectrometry-based approaches, we found that both endogenous soluble and membrane-bound proteins carry predominantly oligomannosides ranging from Man-2 to Man-5. In addition, minor complex N-linked glycans were identified as being composed of partially 6-O-methylated Man-3 to Man-5 carrying one or two xylose residues. These findings were supported by results from a glycoproteomic approach that led to the identification of 86 glycoproteins. Here, a combination of in-source collision-induced dissodiation (CID) for glycan fragmentation followed by mass tag-triggered CID for peptide sequencing and PNGase F treatment of glycopeptides in the presence of 18O-labeled water in conjunction with CID mass spectrometric analyses were employed. In conclusion, our data support the notion that the biosynthesis and maturation of N-linked glycans in the endoplasmic reticulum and Golgi apparatus occur via a GnT I-independent pathway yielding novel complex N-linked glycans that maturate differently from their counterparts in land plants.


PLOS ONE | 2012

Phosphorylation controls the localization and activation of the lumenal carbonic anhydrase in Chlamydomonas reinhardtii.

Amaya Blanco-Rivero; Tatiana Shutova; María José Román; Arsenio Villarejo; Flor Martínez

Background Cah3 is the only carbonic anhydrase (CA) isoform located in the thylakoid lumen of Chlamydomonas reinhardtii. Previous studies demonstrated its association with the donor side of the photosystem II (PSII) where it is required for the optimal function of the water oxidizing complex. However this enzyme has also been frequently proposed to perform a critical function in inorganic carbon acquisition and CO2 fixation and all mutants lacking Cah3 exhibit very poor growth after transfer to low CO2 conditions. Results/Conclusions In the present work we demonstrate that after transfer to low CO2, Cah3 is phosphorylated and that phosphorylation is correlated to changes in its localization and its increase in activity. When C. reinhardtii wild-type cells were acclimated to limiting CO2 conditions, the Cah3 activity increased about 5–6 fold. Under these conditions, there were no detectable changes in the level of the Cah3 polypeptide. The increase in activity was specifically inhibited in the presence of Staurosporine, a protein kinase inhibitor, suggesting that the Cah3 protein was post-translationally regulated via phosphorylation. Immunoprecipitation and in vitro dephosphorylation experiments confirm this hypothesis. In vivo phosphorylation analysis of thylakoid polypeptides indicates that there was a 3-fold increase in the phosphorylation signal of the Cah3 polypeptide within the first two hours after transfer to low CO2 conditions. The increase in the phosphorylation signal was correlated with changes in the intracellular localization of the Cah3 protein. Under high CO2 conditions, the Cah3 protein was only associated with the donor side of PSII in the stroma thylakoids. In contrast, in cells grown at limiting CO2 the protein was partly concentrated in the thylakoids crossing the pyrenoid, which did not contain PSII and were surrounded by Rubisco molecules. Significance This is the first report of a CA being post-translationally regulated and describing phosphorylation events in the thylakoid lumen.


Journal of Bacteriology | 2001

pbpB, a Gene Coding for a Putative Penicillin-Binding Protein, Is Required for Aerobic Nitrogen Fixation in the Cyanobacterium Anabaena sp. Strain PCC7120

Sara Lázaro; Francisca Fernández-Piñas; Eduardo Fernández-Valiente; Amaya Blanco-Rivero; Francisco Leganés

Transposon mutagenesis of Anabaena sp. strain PCC7120 led to the isolation of a mutant strain, SNa1, which is unable to fix nitrogen aerobically but is perfectly able to grow with combined nitrogen (i. e., nitrate). Reconstruction of the transposon mutation of SNa1 in the wild-type strain reproduced the phenotype of the original mutant. The transposon had inserted within an open reading frame whose translation product shows significant homology with a family of proteins known as high-molecular-weight penicillin-binding proteins (PBPs), which are involved in the synthesis of the peptidoglycan layer of the cell wall. A sequence similarity search allowed us to identify at least 12 putative PBPs in the recently sequenced Anabaena sp. strain PCC7120 genome, which we have named and organized according to predicted molecular size and the Escherichia coli nomenclature for PBPs; based on this nomenclature, we have denoted the gene interrupted in SNal as pbpB and its product as PBP2. The wild-type form of pbpB on a shuttle vector successfully complemented the mutation in SNa1. In vivo expression studies indicated that PBP2 is probably present when both sources of nitrogen, nitrate and N(2), are used. When nitrate is used, the function of PBP2 either is dispensable or may be substituted by other PBPs; however, under nitrogen deprivation, where the differentiation of the heterocyst takes place, the role of PBP2 in the formation and/or maintenance of the peptidoglycan layer is essential.


Archives of Microbiology | 2005

Wide variation in the cyanobacterial complement of presumptive penicillin-binding proteins

Francisco Leganés; Amaya Blanco-Rivero; Francisca Fernández-Piñas; Miguel Redondo; Eduardo Fernández-Valiente; Qing Fan; Sigal Lechno-Yossef; C. Peter Wolk

A genomic analysis of putative penicillin-binding proteins (PBPs) that are involved in the synthesis of the peptidoglycan layer of the cell wall and are encoded in 12 cyanobacterial genomes was performed in order to help elucidate the role(s) of these proteins in peptidoglycan synthesis, especially during cyanobacterial cellular differentiation. The analysis suggested that the minimum set of PBPs needed to assemble the peptidoglycan layer in cyanobacteria probably does not exceed one bifunctional transpeptidase–transglycosylase Class A high-molecular-weight PBP; two Class B high-molecular-weight PBPs, one of them probably involved in cellular elongation and the other in septum formation; and one low-molecular-weight PBP. The low-molecular-weight PBPs of all of the cyanobacteria analyzed are putative endopeptidases and are encoded by fewer genes than in Escherichia coli. We show that in Anabaena sp. strain PCC 7120, predicted proteins All2981 and Alr4579, like Alr5101, are Class A high-molecular-weight PBPs that are required for the functional differentiation of aerobically diazotrophic heterocysts, indicating that some members of this class of PBPs are required specifically for cellular developmental processes.


Journal of Plant Physiology | 2009

mrpA (all1838), a gene involved in alkali and Na+ sensitivity, may also have a role in energy metabolism in the cyanobacterium Anabaena sp. strain PCC 7120

Amaya Blanco-Rivero; Francisco Leganés; Eduardo Fernández-Valiente; Francisca Fernández-Piñas

Anabaena sp. PCC7120 contains a gene, mrpA (all1838), which forms part of a seven gene-cluster (all1843-all1837) with significant sequence similarity to bacterial operons that putatively code for a multicomponent cation/proton antiporter involved in alkaline pH adaptation and salt resistance. We previously showed that growth and photosynthesis were inhibited in a strain mutated in mrpA, denoted as PHB11, particularly at alkaline pH. Here, we show that respiration was also impaired in the mutant independently of the external pH. In addition, at high pH, less ATP and vegetative cell ferredoxin were present in PHB11, which also showed lower levels of ferredoxin-NADP(+) oxidoreductase (FNR). Ferredoxin and FNR are involved in the generation of reductant NADPH in cyanobacteria. These results suggest an energetic role of mrpA (and perhaps of the whole mrp-gene cluster) in Anabaena sp. PCC 7120 that is further supported by the significant similarity of putative Anabaena Mrp proteins to membrane subunits of complex I.


Journal of Bioenergetics and Biomembranes | 2007

A message emerging from development: the repression of mitochondrial β-F1-ATPase expression in cancer

José M. Cuezva; María Sánchez-Aragó; Sandra Sala; Amaya Blanco-Rivero; Alvaro Dario Ortega


Microbiology | 2005

mrpA, a gene with roles in resistance to Na+ and adaptation to alkaline pH in the cyanobacterium Anabaena sp. PCC7120.

Amaya Blanco-Rivero; Francisco Leganés; Eduardo Fernández-Valiente; P Calle; Francisca Fernández-Piñas


Archive | 2013

NOVEL COMPLEX STRUCTURES.

Elodie Mathieu-Rivet; Martin Scholz; Carolina Arias; Flavien Dardelle; François Le Mauff; Gavin Teo; Ana Karina Hochmal; Amaya Blanco-Rivero; Corinne Loutelier-Bourhis; Marie-Christine Kiefer-Meyer; Christian Fufezan; Carole Burel; Patrice Lerouge; Flor Martínez; Muriel Bardor; Michael Hippler

Collaboration


Dive into the Amaya Blanco-Rivero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco Leganés

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Flor Martínez

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolina Arias

Autonomous University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge