Ambekar E. Eknath
Central Institute of Freshwater Aquaculture
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ambekar E. Eknath.
Marine Biotechnology | 2012
Nicholas Robinson; P.K. Sahoo; Matthew Baranski; Kanta Das Mahapatra; Jatindra Nath Saha; Sweta Das; Yashowant Mishra; Paramananda Das; Hirak Kumar Barman; Ambekar E. Eknath
Expressed genes and polymorphisms were identified in lines of rohu Labeo rohita selected for resistance or susceptibility to Aeromonas hydrophila, an important bacterial pathogen causing aeromoniasis. All animals were grown in a common environment and RNA from ten individuals from each line pooled for Illumina mRNA-seq. De novo transcriptome assembly produced 137,629 contigs with 40× average coverage. Forty-four percent of the assembled sequences were annotated with gene names and ontology terms. Of these, 3,419 were assigned biological process terms related to “stress response” and 1,939 “immune system”. Twenty-six contigs containing 38 single nucleotide polymorphisms (SNPs) were found to map to the Cyprinus carpio mitochondrial genome and over 26,000 putative SNPs and 1,700 microsatellite loci were detected. Seventeen percent of the 100 transcripts with coverage data most indicative of higher-fold expression (>5.6 fold) in the resistant line pool showed homology to major histocompatibility (MH), heat shock proteins (HSP) 30, 70 and 90, glycoproteins or serum lectin genes with putative functions affecting immune response. Forty-one percent of these 100 transcripts showed no or low homology to known genes. Of the SNPs identified, 96 showing the highest allele frequency differences between susceptible and resistant line fish included transcripts with homology to MH class I and galactoside-binding soluble lectin, also with putative functions affecting innate and acquired immune response. A comprehensive sequence resource for L. rohita, including annotated microsatellites and SNPs from a mixture of A. hydrophila-susceptible and -resistant individuals, was created for subsequent experiments aiming to identify genes associated with A. hydrophila resistance.
Developmental and Comparative Immunology | 2012
Banikalyan Swain; Madhubanti Basu; Bikash Ranjan Sahoo; Nikhil Kumar Maiti; P. Routray; Ambekar E. Eknath; Mrinal Samanta
Nucleotide-binding and oligomerization domain (NOD)-2 is a cytoplasmic pattern recognition receptor (PRR) and is a member of NOD like receptor (NLR) family. It senses a wide range of bacteria and viruses or their products and is involved in innate immune responses. In this report, NOD-2 gene was cloned and characterized from rohu (Labeo rohita) which is highly commercially important fish species in the Indian subcontinent. The full length rohu NOD-2 (rNOD-2) cDNA comprised of 3176 bp with a single open reading frame (ORF) of 2949 bp encoding a polypeptide of 982 amino acids (aa) with an estimated molecular mass of 109.65 kDa. The rNOD-2 comprised two N-terminal CARD domains (at 4-91 aa and 111-200 aa), one NACHT domain (at 271-441 aa) and seven C-terminal leucine rich repeat (LRR) regions. Phylogenetically, rNOD-2 was closely related to grass carp NOD-2 (gcNOD2) and exhibited significant similarity (94.2%) and identity (88.6%) in their amino acids. Ontogeny analysis of rNOD-2 showed its constitutive expression across the developmental stages, and highlighted the embryonic innate defense system in fish. Tissue specific analysis of rNOD-2 by quantitative real-time PCR (qRT-PCR) revealed its wide distribution; highest expression was in liver followed by blood. In response to PGN and LTA stimulation, Aeromonas hydrophila and Edwardsiella tarda infection, and poly I:C treatment, expression of rNOD-2 and its associated downstream molecules RICK and IFN-γ were significantly enhanced in the treated fish compared to control. These findings suggested the key role of NOD-2 in augmenting innate immunity in fish in response to bacterial and viral infection. This study may be helpful for the development of preventive measures against infectious diseases in fish.
Fish & Shellfish Immunology | 2011
P.K. Sahoo; P.R. Rauta; B.R. Mohanty; Kanta Das Mahapatra; Jatindra Nath Saha; Morten Rye; Ambekar E. Eknath
Selection for disease resistance in fish may be performed directly on basis of survival data obtained in controlled challenge trials, or indirectly using information from immunological or molecular markers linked to differential survival. In the present study, several key innate immune parameters were measured in aeromoniasis resistant and susceptible lines of rohu Labeo rohita to assess their suitability as immune markers for use in indirect selection for increased resistance. Experimental infection with Aeromonas hydrophila (9.55 × 10(6) cfu g(-1) fish) through the intraperitoneal route produced higher survival in the resistant line (73.33%) as compared to the susceptible line (16.67%). Blood and liver tissue samples from both lines were collected to study some of the innate immune parameters and immune-related gene expression. The respiratory burst activity of blood phagocytes, serum myeloperoxidase activity and ceruloplasmin level were significantly (p < 0.05) higher in the resistant line compared to the susceptible line. Lower level of blood glucose and serum natural haemolysin titre were marked in the resistant line as compared to the susceptible line. No significant difference was measured in total serum protein concentration, antiprotease activity and bacterial agglutinin level between two lines, while the expression of transferrin, complement factor C3 and TLR 22-like transcripts were significantly (P < 0.05) higher in liver samples of the susceptible line. However, no such difference was found in β(2)-microglobulin and lysozyme gene expression between lines. The study demonstrated the possibility of using some of the investigated innate immune parameters as indirect marker traits for selection for improved resistance to aeromoniasis in rohu.
Fish & Shellfish Immunology | 2011
S.P. Nayak; Bikash Ranjan Mohanty; J. Mishra; P.R. Rauta; A. Das; Ambekar E. Eknath; P.K. Sahoo
The innate immune response in fish represents an early and rapid defense against pathogens. The present study aims at looking into ontogeny of innate immune system in the teleost, Labeo rohita using RT-PCR based approach. Total RNA extracted from unfertilized and fertilized eggs, and hatchlings (hatched at 28 ± 2 °C) at 0, 1, 3, 6, 12, 24 h, and 3, 7, 16, 21, 31 days post-fertilization were subjected to RT-PCR using self-designed or earlier published primers to amplify some innate immune relevant genes (lysozyme C, lysozyme G, beta-2 microglobulin, toll-like receptor 22-like and transferrin). The constitutive expression of β-actin was detected in unfertilized eggs and further developmental stages. Transferrin and TLR22-like mRNA transcripts were detected by RT-PCR from 6 h post-fertilization to 31 day post-fertilization, whereas β-2 microglobulin transcripts were detected only from 7 day post-fertilization onwards. Lysozyme C mRNA transcripts were detected from 24 h post-fertilization to 31 day post-fertilization. Lysozyme G mRNA transcripts were detected early from unfertilized egg stage onwards. Similarly, tissues viz. intestine, heart, ovary, gill, spleen, muscle, liver, brain, skin, anterior kidney, posterior kidney, and blood collected from juveniles of rohu were subjected to detection of all above mentioned gene transcripts by RT-PCR. β2-microglobulin mRNA transcript was expressed in all tissues. Lysozyme C mRNA expression is confined to blood and posterior kidney only whereas lysozyme G mRNA is expressed in all tissues. TLR22-like mRNA is expressed in all tissues except ovary and liver whereas transferrin mRNA transcript is detected only in liver. Finally, all these information taken are likely to shed light on the ontogeny of innate immunity in L. rohita, which offers new insights to developmental biology when compared to higher vertebrates and also helpful in the development of preventive measures against problems concerning infectious diseases.
Gene | 2013
Dinesh Kumar Sahu; Soumya P. Panda; Sujata Panda; Paramananda Das; P. K. Meher; Rupenangshu K. Hazra; Eric Peatman; Zhanjiang Liu; Ambekar E. Eknath; Samiran Nandi
Labeo rohita (Ham.) also called rohu is the most important freshwater aquaculture species on the Indian sub continent. Monsoon dependent breeding restricts its seed production beyond season indicating a strong genetic control about which very limited information is available. Additionally, few genomic resources are publicly available for this species. Here we sought to identify reproduction-relevant genes from normalized cDNA libraries of the brain-pituitary-gonad-liver (BPGL-axis) tissues of adult L. rohita collected during post preparatory phase. 6161 random clones sequenced (Sanger-based) from these libraries produced 4642 (75.34%) high-quality sequences. They were assembled into 3631 (78.22%) unique sequences composed of 709 contigs and 2922 singletons. A total of 182 unique sequences were found to be associated with reproduction-related genes, mainly under the GO term categories of reproduction, neuro-peptide hormone activity, hormone and receptor binding, receptor activity, signal transduction, embryonic development, cell-cell signaling, cell death and anti-apoptosis process. Several important reproduction-related genes reported here for the first time in L. rohita are zona pellucida sperm-binding protein 3, aquaporin-12, spermine oxidase, sperm associated antigen 7, testis expressed 261, progesterone receptor membrane component, Neuropeptide Y and Pro-opiomelanocortin. Quantitative RT-PCR-based analyses of 8 known and 8 unknown transcripts during preparatory and post-spawning phase showed increased expression level of most of the transcripts during preparatory phase (except Neuropeptide Y) in comparison to post-spawning phase indicating possible roles in initiation of gonad maturation. Expression of unknown transcripts was also found in prolific breeder common carp and tilapia, but levels of expression were much higher in seasonal breeder rohu. 3631 unique sequences contained 236 (6.49%) putative microsatellites with the AG (28.16%) repeat as the most frequent motif. Twenty loci showed polymorphism in 36 unrelated individuals with allele frequency ranging from 2 to 7 per locus. The observed heterozygosity ranged from 0.096 to 0.774 whereas the expected heterozygosity ranged from 0.109 to 0.801. Identification of 182 important reproduction-related genes and expression pattern of 16 transcripts in preparatory and post-spawning phase along with 20 polymorphic EST-SSRs should be highly useful for the future reproductive molecular studies and selection program in Labeo rohita.
Reviews in Aquaculture | 2009
Ambekar E. Eknath; Gideon Hulata
Aquaculture Research | 2012
Jyotirmayee Pradhan; Basanta Kumar Das; Swagatika Sahu; Nilima Priyadarshini Marhual; Anil K Swain; B. Mishra; Ambekar E. Eknath
Aquaculture Research | 2012
Banikalyan Swain; Mrinal Samanta; Madhubanti Basu; Padmaja Panda; Bikash Ranjan Sahoo; Nikhil Kumar Maiti; B. Mishra; Ambekar E. Eknath
Indian Journal of Microbiology | 2011
Ipsita Sahu; Basanta Kumar Das; Nilima Priyadarshini Marhual; Mrinal Samanta; B. Mishra; Ambekar E. Eknath
Aquaculture Research | 2011
Hirak Kumar Barman; Rudra Prasanna Panda; Chinmayee Mohapatra; Aliza Swain; Ambekar E. Eknath