Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amber L. Degryse is active.

Publication


Featured researches published by Amber L. Degryse.


American Journal of Respiratory and Critical Care Medicine | 2009

Contribution of Epithelial-derived Fibroblasts to Bleomycin-induced Lung Fibrosis

Harikrishna Tanjore; Xiaochuan C. Xu; Vasiliy V. Polosukhin; Amber L. Degryse; Bo Li; Wei Han; Taylor P. Sherrill; David Plieth; Eric G. Neilson; Timothy S. Blackwell; William Lawson

RATIONALE Lung fibroblasts are key mediators of fibrosis resulting in accumulation of excessive interstitial collagen and extracellular matrix, but their origins are not well defined. OBJECTIVES We aimed to elucidate the contribution of lung epithelium-derived fibroblasts via epithelial-mesenchymal transition (EMT) in the intratracheal bleomycin model. METHODS Primary type II alveolar epithelial cells were cultured from Immortomice and exposed to transforming growth factor-beta(1) and epidermal growth factor. Cell fate reporter mice that permanently mark cells of lung epithelial lineage with beta-galactosidase were developed to study EMT, and bone marrow chimeras expressing green fluorescent protein under the control of the fibroblast-associated S100A4 promoter were generated to examine bone marrow-derived fibroblasts. Mice were given intratracheal bleomycin (0.08 unit). Immunostaining was performed for S100A4, beta-galactosidase, green fluorescent protein, and alpha-smooth muscle actin. MEASUREMENTS AND MAIN RESULTS In vitro, primary type II alveolar epithelial cells undergo phenotypic changes of EMT when exposed to transforming growth factor-beta(1) and epidermal growth factor with loss of prosurfactant protein C and E-cadherin and gain of S100A4 and type I procollagen. In vivo, using cell fate reporter mice, approximately one-third of S100A4-positive fibroblasts were derived from lung epithelium 2 weeks after bleomycin administration. From bone marrow chimera studies, one-fifth of S100A4-positive fibroblasts were derived from bone marrow at this same time point. Myofibroblasts rarely derived from EMT or bone marrow progenitors. CONCLUSIONS Both EMT and bone marrow progenitors contribute to S100A4-positive fibroblasts in bleomycin-induced lung fibrosis. However, neither origin is a principal contributor to lung myofibroblasts.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs

William Lawson; Dong-Sheng Cheng; Amber L. Degryse; Harikrishna Tanjore; Vasiliy V. Polosukhin; Xiaochuan C. Xu; Dawn C. Newcomb; Brittany R. Jones; Juan Roldan; Kirk B. Lane; Edward E. Morrisey; Michael F. Beers; Fiona E. Yull; Timothy S. Blackwell

Evidence of endoplasmic reticulum (ER) stress has been found in lungs of patients with familial and sporadic idiopathic pulmonary fibrosis. We tested whether ER stress causes or exacerbates lung fibrosis by (i) conditional expression of a mutant form of surfactant protein C (L188Q SFTPC) found in familial interstitial pneumonia and (ii) intratracheal treatment with the protein misfolding agent tunicamycin. We developed transgenic mice expressing L188Q SFTPC exclusively in type II alveolar epithelium by using the Tet-On system. Expression of L188Q SFTPC induced ER stress, as determined by increased expression of heavy-chain Ig binding protein (BiP) and splicing of X-box binding protein 1 (XBP1) mRNA, but no lung fibrosis was identified in the absence of a second profibrotic stimulus. After intratracheal bleomycin, L188Q SFTPC-expressing mice developed exaggerated lung fibrosis and reduced static lung compliance compared with controls. Bleomycin-treated L188Q SFTPC mice also demonstrated increased apoptosis of alveolar epithelial cells and greater numbers of fibroblasts in the lungs. With a complementary model, intratracheal tunicamycin treatment failed to induce lung remodeling yet resulted in augmentation of bleomycin-induced fibrosis. These data support the concept that ER stress produces a dysfunctional epithelial cell phenotype that facilitates fibrotic remodeling. ER stress pathways may serve as important therapeutic targets in idiopathic pulmonary fibrosis.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis

Amber L. Degryse; Harikrishna Tanjore; Xiaochuan C. Xu; Vasiliy V. Polosukhin; Brittany R. Jones; Frank B. McMahon; Linda A. Gleaves; Timothy S. Blackwell; William Lawson

Single-dose intratracheal bleomycin has been instrumental for understanding fibrotic lung remodeling, but fails to recapitulate several features of idiopathic pulmonary fibrosis (IPF). Since IPF is thought to result from recurrent alveolar injury, we aimed to develop a repetitive bleomycin model that results in lung fibrosis with key characteristics of human disease, including alveolar epithelial cell (AEC) hyperplasia. Wild-type and cell fate reporter mice expressing β-galactosidase in cells of lung epithelial lineage were given intratracheal bleomycin after intubation, and lungs were harvested 2 wk after a single or eighth biweekly dose. Lungs were evaluated for fibrosis and collagen content. Bronchoalveolar lavage (BAL) was performed for cell counts. TUNEL staining and immunohistochemistry were performed for pro-surfactant protein C (pro-SP-C), Clara cell 10 (CC-10), β-galactosidase, S100A4, and α-smooth muscle actin. Lungs from repetitive bleomycin mice had marked fibrosis with prominent AEC hyperplasia, similar to usual interstitial pneumonia (UIP). Compared with single dosing, repetitive bleomycin mice had greater fibrosis by scoring, morphometry, and collagen content; increased TUNEL+ AECs; and reduced inflammatory cells in BAL. Sixty-four percent of pro-SP-C+ cells in areas of fibrosis expressed CC-10 in the repetitive model, suggesting expansion of a bronchoalveolar stem cell-like population. In reporter mice, 50% of S100A4+ lung fibroblasts were derived from epithelial mesenchymal transition compared with 33% in the single-dose model. With repetitive bleomycin, fibrotic remodeling persisted 10 wk after the eighth dose. Repetitive intratracheal bleomycin results in marked lung fibrosis with prominent AEC hyperplasia, features reminiscent of UIP.


Journal of Biological Chemistry | 2011

Alveolar Epithelial Cells Undergo Epithelial-to-Mesenchymal Transition in Response to Endoplasmic Reticulum Stress * □

Harikrishna Tanjore; Dong-Sheng Cheng; Amber L. Degryse; Donald F. Zoz; Rasul Abdolrasulnia; William Lawson; Timothy S. Blackwell

Expression of mutant surfactant protein C (SFTPC) results in endoplasmic reticulum (ER) stress in type II alveolar epithelial cells (AECs). AECs have been implicated as a source of lung fibroblasts via epithelial-to-mesenchymal transition (EMT); therefore, we investigated whether ER stress contributes to EMT as a possible mechanism for fibrotic remodeling. ER stress was induced by tunicamyin administration or stable expression of mutant (L188Q) SFTPC in type II AEC lines. Both tunicamycin treatment and mutant SFTPC expression induced ER stress and the unfolded protein response. With tunicamycin or mutant SFTPC expression, phase contrast imaging revealed a change to a fibroblast-like appearance. During ER stress, expression of epithelial markers E-cadherin and Zonula occludens-1 decreased while expression of mesenchymal markers S100A4 and α-smooth muscle actin increased. Following induction of ER stress, we found activation of a number of pathways, including MAPK, Smad, β-catenin, and Src kinase. Using specific inhibitors, the combination of a Smad2/3 inhibitor (SB431542) and a Src kinase inhibitor (PP2) blocked EMT with maintenance of epithelial appearance and epithelial marker expression. Similar results were noted with siRNA targeting Smad2 and Src kinase. Together, these studies reveal that induction of ER stress leads to EMT in lung epithelial cells, suggesting possible cross-talk between Smad and Src kinase pathways. Dissecting pathways involved in ER stress-induced EMT may lead to new treatment strategies to limit fibrosis.


Journal of Immunology | 2011

A Critical Role for Macrophages in Promotion of Urethane-Induced Lung Carcinogenesis

Rinat Zaynagetdinov; Taylor P. Sherrill; Vasiliy V. Polosukhin; Wei Han; Jamie A. Ausborn; Allyson G. McLoed; Frank B. McMahon; Linda A. Gleaves; Amber L. Degryse; Georgios T. Stathopoulos; Fiona E. Yull; Timothy S. Blackwell

Macrophages have established roles in tumor growth and metastasis, but information about their role in lung tumor promotion is limited. To assess the role of macrophages in lung tumorigenesis, we developed a method of minimally invasive, long-term macrophage depletion by repetitive intratracheal instillation of liposomal clodronate. Compared with controls treated with repetitive doses of PBS-containing liposomes, long-term macrophage depletion resulted in a marked reduction in tumor number and size at 4 mo after a single i.p. injection of the carcinogen urethane. After urethane treatment, lung macrophages developed increased M1 macrophage marker expression during the first 2–3 wk, followed by increased M2 marker expression by week 6. Using a strategy to reduce alveolar macrophages during tumor initiation and early promotion stages (weeks 1–2) or during late promotion and progression stages (weeks 4–16), we found significantly fewer and smaller lung tumors in both groups compared with controls. Late-stage macrophage depletion reduced VEGF expression and impaired vascular growth in tumors. In contrast, early-stage depletion of alveolar macrophages impaired urethane-induced NF-κB activation in the lungs and reduced the development of premalignant atypical adenomatous hyperplasia lesions at 6 wk after urethane injection. Together, these studies elucidate an important role for macrophages in lung tumor promotion and indicate that these cells have distinct roles during different stages of lung carcinogenesis.


The American Journal of the Medical Sciences | 2011

Progress Toward Improving Animal Models for Idiopathic Pulmonary Fibrosis

Amber L. Degryse; William Lawson

Idiopathic pulmonary fibrosis (IPF) remains a disease with an unknown cause and a poor prognosis. Among attempts to define disease pathogenesis, animal models of experimental lung fibrosis have a prominent role. Commonly used models include exposure to bleomycin, silica, fluorescein isothiocyanate; irradiation; or expression of specific genes through a viral vector or transgenic system. These all have been instrumental in the study of lung fibrosis, but all have limitations and fall short of recapitulating a pattern of usual interstitial pneumonia, the pathologic correlate to IPF. A model of repetitive bleomycin lung injury has recently been reported that results in marked lung fibrosis, prominent alveolar epithelial cell hyperplasia, a pattern of temporal heterogeneity and persistence of aberrant remodeling well after stimulus removal, representing a significant addition to the collection of animal lung fibrosis models. Taken together, animal models remain a key component in research strategies to better define IPF pathogenesis.


The American Journal of the Medical Sciences | 2011

Symposium ArticleProgress Toward Improving Animal Models for Idiopathic Pulmonary Fibrosis

Amber L. Degryse; William Lawson

Idiopathic pulmonary fibrosis (IPF) remains a disease with an unknown cause and a poor prognosis. Among attempts to define disease pathogenesis, animal models of experimental lung fibrosis have a prominent role. Commonly used models include exposure to bleomycin, silica, fluorescein isothiocyanate; irradiation; or expression of specific genes through a viral vector or transgenic system. These all have been instrumental in the study of lung fibrosis, but all have limitations and fall short of recapitulating a pattern of usual interstitial pneumonia, the pathologic correlate to IPF. A model of repetitive bleomycin lung injury has recently been reported that results in marked lung fibrosis, prominent alveolar epithelial cell hyperplasia, a pattern of temporal heterogeneity and persistence of aberrant remodeling well after stimulus removal, representing a significant addition to the collection of animal lung fibrosis models. Taken together, animal models remain a key component in research strategies to better define IPF pathogenesis.


American Journal of Respiratory and Critical Care Medicine | 2013

β-Catenin in the Alveolar Epithelium Protects from Lung Fibrosis after Intratracheal Bleomycin

Harikrishna Tanjore; Amber L. Degryse; Peter F. Crossno; Xiaochuan C. Xu; Melinda E. McConaha; Brittany R. Jones; Vasiliy V. Polosukhin; Andrew J. Bryant; Dong-Sheng Cheng; Dawn C. Newcomb; Frank B. McMahon; Linda A. Gleaves; Timothy S. Blackwell; William Lawson

RATIONALE Alveolar epithelial cells (AECs) play central roles in the response to lung injury and the pathogenesis of pulmonary fibrosis. OBJECTIVES We aimed to determine the role of β-catenin in alveolar epithelium during bleomycin-induced lung fibrosis. METHODS Genetically modified mice were developed to selectively delete β-catenin in AECs and were crossed to cell fate reporter mice that express β-galactosidase (βgal) in cells of AEC lineage. Mice were given intratracheal bleomycin (0.04 units) and assessed for AEC death, inflammation, lung injury, and fibrotic remodeling. Mouse lung epithelial cells (MLE12) with small interfering RNA knockdown of β-catenin underwent evaluation for wound closure, proliferation, and bleomycin-induced cytotoxicity. MEASUREMENTS AND MAIN RESULTS Increased β-catenin expression was noted in lung parenchyma after bleomycin. Mice with selective deletion of β-catenin in AECs had greater AEC death at 1 week after bleomycin, followed by increased numbers of fibroblasts and enhanced lung fibrosis as determined by semiquantitative histological scoring and total collagen content. However, no differences in lung inflammation or protein levels in bronchoalveolar lavage were noted. In vitro, β-catenin-deficient AECs showed increased bleomycin-induced cytotoxicity as well as reduced proliferation and impaired wound closure. Consistent with these findings, mice with AEC β-catenin deficiency showed delayed recovery after bleomycin. CONCLUSIONS β-Catenin in the alveolar epithelium protects against bleomycin-induced fibrosis. Our studies suggest that AEC survival and wound healing are enhanced through β-catenin-dependent mechanisms. Activation of the developmentally important β-catenin pathway in AECs appears to contribute to epithelial repair after epithelial injury.


American Journal of Respiratory and Critical Care Medicine | 2015

Extensive Phenotyping of Individuals at Risk for Familial Interstitial Pneumonia Reveals Clues to the Pathogenesis of Interstitial Lung Disease

Jonathan A. Kropski; Jason M. Pritchett; Donald F. Zoz; Peter F. Crossno; Cheryl Markin; Errine T. Garnett; Amber L. Degryse; Daphne B. Mitchell; Vasiliy V. Polosukhin; Otis B. Rickman; Leena Choi; Dong Sheng Cheng; Melinda E. McConaha; Brittany R. Jones; Linda A. Gleaves; Frank B. McMahon; John A. Worrell; Joseph F. Solus; Lorraine B. Ware; Jae-Woo Lee; Pierre P. Massion; Rinat Zaynagetdinov; Eric S. White; Jonathan D. Kurtis; Joyce E. Johnson; Steve D. Groshong; Lisa H. Lancaster; Lisa R. Young; Mark P. Steele; John A. Phillips

RATIONALE Asymptomatic relatives of patients with familial interstitial pneumonia (FIP), the inherited form of idiopathic interstitial pneumonia, carry increased risk for developing interstitial lung disease. OBJECTIVES Studying these at-risk individuals provides a unique opportunity to investigate early stages of FIP pathogenesis and develop predictive models of disease onset. METHODS Seventy-five asymptomatic first-degree relatives of FIP patients (mean age, 50.8 yr) underwent blood sampling and high-resolution chest computed tomography (HRCT) scanning in an ongoing cohort study; 72 consented to bronchoscopy with bronchoalveolar lavage (BAL) and transbronchial biopsies. Twenty-seven healthy individuals were used as control subjects. MEASUREMENTS AND MAIN RESULTS Eleven of 75 at-risk subjects (14%) had evidence of interstitial changes by HRCT, whereas 35.2% had abnormalities on transbronchial biopsies. No differences were noted in inflammatory cells in BAL between at-risk individuals and control subjects. At-risk subjects had increased herpesvirus DNA in cell-free BAL and evidence of herpesvirus antigen expression in alveolar epithelial cells (AECs), which correlated with expression of endoplasmic reticulum stress markers in AECs. Peripheral blood mononuclear cell and AEC telomere length were shorter in at-risk individuals than healthy control subjects. The minor allele frequency of the Muc5B rs35705950 promoter polymorphism was increased in at-risk subjects. Levels of several plasma biomarkers differed between at-risk subjects and control subjects, and correlated with abnormal HRCT scans. CONCLUSIONS Evidence of lung parenchymal remodeling and epithelial dysfunction was identified in asymptomatic individuals at risk for FIP. Together, these findings offer new insights into the early pathogenesis of idiopathic interstitial pneumonia and provide an ongoing opportunity to characterize presymptomatic abnormalities that predict progression to clinical disease.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2011

TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment

Amber L. Degryse; Harikrishna Tanjore; Xiaochuan C. Xu; Vasiliy V. Polosukhin; Brittany R. Jones; Chad S. Boomershine; Camila Ortiz; Taylor P. Sherrill; Frank B. McMahon; Linda A. Gleaves; Timothy S. Blackwell; William Lawson

The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-β (TGFβ) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFβ receptor 2 (TGFβR2) in lung epithelium were generated and crossed to cell fate reporter mice that express β-galactosidase (β-gal) in cells of lung epithelial lineage. Mice were given intratracheal bleomycin (0.08 U), and the following parameters were assessed: AEC death by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay, inflammation by total and differential cell counts from bronchoalveolar lavage, fibrosis by scoring of trichrome-stained lung sections, and total lung collagen content. Mice with lung epithelial deficiency of TGFβR2 had improved AEC survival, despite greater lung inflammation, after bleomycin administration. At 3 wk after bleomycin administration, mice with epithelial TGFβR2 deficiency showed a significantly attenuated fibrotic response in the lungs, as determined by semiquantitatve scoring and total collagen content. The reduction in lung fibrosis in these mice was associated with a marked decrease in the lung fibroblast population, both total lung fibroblasts and epithelial-to-mesenchymal transition-derived (S100A4(+)/β-gal(+)) fibroblasts. Attenuation of TGFβ signaling in lung epithelium provides protection from bleomycin-induced fibrosis, indicating a critical role for the epithelium in transducing the profibrotic effects of this cytokine.

Collaboration


Dive into the Amber L. Degryse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge