Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ambikanandan Misra is active.

Publication


Featured researches published by Ambikanandan Misra.


Biomaterials | 2010

The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl L-glutamate)-b-hyaluronan polymersomes

Kamal Kumar Upadhyay; Anant Narayan Bhatt; Anil K. Mishra; Bilikere S. Dwarakanath; Sanyog Jain; Christophe Schatz; Jean-François Le Meins; Abdullah Farooque; Godugu Chandraiah; Amit Jain; Ambikanandan Misra; Sébastien Lecommandoux

We have investigated the intracellular delivery of doxorubicin (DOX) loaded poly(gamma-benzyl L-glutamate)-block-hyaluronan (PBLG-b-HYA) based polymersomes (PolyDOX) in high (MCF-7) and low (U87) CD44 expressing cancer cell models. DOX was successfully loaded into polymersomes using nanoprecipitation method and in vitro drug release pattern were achieved at pH 5.5 and 7.4 up to 10 days. Block copolymer vesicles without loaded DOX were non cytotoxic in both cells at concentration 150-650 microg/mL. Flow cytometry data suggested successful uptake of PolyDOX in cells and high accumulation was found in MCF-7 than U87 cells. Microscopy imagings revealed that in MCF-7 cells PolyDOX was more in cytoplasm and free DOX in nuclei, whereas in U87 cells free DOX was also found in the cytoplasm. Cytotoxicity of the drug was concentration and exposure time dependent. In addition, PolyDOX significantly enhanced reactive oxygen species (ROS) level in both cells. PolyDOX also suppressed growth of breast tumor on female Sprague-Dawley (SD) rats as compared to phosphate buffer saline pH 7.4 (PBS) control group. In addition reduced level of serum enzymes (LDH and CPK) by PolyDOX formulation indicated less cardiotoxicity of DOX after loading in polymersomes. Results suggest that intracellular delivery of PolyDOX was depended on the CD44 expression level in cells due to presence of hyaluronic acid on the surface of polymersomes, and could be used as a self-targeting drug delivery cargo in over-expressed CD44 glycoprotein cells of breast cancer.


International Journal of Pharmaceutics | 2008

Intranasal nanoemulsion based brain targeting drug delivery system of risperidone

Mukesh Kumar; Ambikanandan Misra; Anil Kumar Babbar; Anurag Mishra; Puspa Mishra; Kamla Pathak

The objective of investigation was to prepare nanoemulsion containing risperidone (RSP) to accomplish the delivery of drug to the brain via nose. Risperidone nanoemulsion (RNE) and mucoadhesive nanoemulsion (RMNE) were characterized for drug content, pH, percentage transmittance, globule size and zeta potential. Biodistribution of RNE, RMNE, and risperidone solution (RS) in the brain and blood of Swiss albino rats following intranasal (i.n.) and intravenous (i.v.) administration was examined using optimized technetium labeled ((99m)Tc-labeled) RSP formulations. Gamma scintigraphy imaging of rat brain following i.v. and i.n. administrations were performed to ascertain the localization of drug in brain. The brain/blood uptake ratio of 0.617, 0.754, 0.948, and 0.054 for RS (i.n.), RNE (i.n.), RMNE (i.n.), and RNE (i.v.), respectively, at 0.5h are indicative of direct nose to brain transport bypassing the blood-brain barrier. Higher drug transport efficiency (DTE%) and direct nose to brain drug transport (direct transport percentage, DTP%) for mucoadhesive nanoemulsions indicated more effective and best brain targeting of RSP amongst the prepared nanoemulsions. Studies conclusively demonstrated rapid and larger extent of transport of RSP by RMNE (i.n.) when compared to RS (i.n.), RNE (i.n.) and RNE (i.v.) into the rat brain.


Journal of Controlled Release | 2014

PEG — A versatile conjugating ligand for drugs and drug delivery systems

Atul Kolate; Dipesh Baradia; Sushilkumar Patil; Imran Vhora; Girish Kore; Ambikanandan Misra

Polyethylene glycol (PEG) conjugation is a rapidly evolving strategy to solve hurdles in therapeutic delivery and is being used as an add-on tool to the traditional drug delivery methods. Chemically, PEGylation is a term used to denote modification of therapeutic molecules by conjugation with PEG. Efforts are constantly being made to develop novel strategies for conjugation of PEG with these molecules in order to increase its current applications. These strategies are specific to the therapeutic system used and also depend on the availability of activated PEGylating agents. Therefore, a prior knowledge is essential in selecting appropriate method for PEGylation. Once achieved, a successful PEGylation can amend the pharmacokinetic and pharmacodynamic outcomes of therapeutics. Specifically, the primary interest is in their ability to decrease uptake by reticuloendothelial system, prolong blood residence, decrease degradation by metabolic enzymes and reduce protein immunogenicity. The extensive research in this field has resulted into many clinical studies. The knowledge of outcome of these studies gave a good feedback and lessons which helped researchers to redesign PEG conjugates with improved features which can increase the chance of hitting the market. In light of this, the current paper highlights the approaches, novel strategies and the utilization of modern concept for PEG conjugation with respect to various bioactive components of clinical relevance. Moreover, this review also discusses potential clinical outcomes of the PEG conjugation, regulatory approved PEGylated product, clinical trials for newer formulations, and also provides future prospects of this technology.


Biomaterials | 2013

Epidermal growth factor receptor targeting in cancer: A review of trends and strategies

Chetan Yewale; Dipesh Baradia; Imran Vhora; Sushilkumar Patil; Ambikanandan Misra

The epidermal growth factor receptor (EGFR) is a cell-surface receptor belonging to ErbB family of tyrosine kinase and it plays a vital role in the regulation of cell proliferation, survival and differentiation. However; EGFR is aberrantly activated by various mechanisms like receptor overexpression, mutation, ligand-dependent receptor dimerization, ligand-independent activation and is associated with development of variety of tumors. Therefore, specific EGFR inhibition is one of the key targets for cancer therapy. Two major approaches have been developed and demonstrated benefits in clinical trials for targeting EGFR; monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs). EGFR inhibitors like, cetuximab, panitumumab, etc. (mAbs) and gefitinib, erlotinib, lapatinib, etc. (TKIs) are now commercially available for treatment of variety of cancers. Recently, many other agents like peptides, nanobodies, affibodies and antisense oligonucleotide have also shown better efficacy in targeting and inhibiting EGFR. Now a days, efforts are being focused to identify molecular markers that can predict patients more likely to respond to anti-EGFR therapy; to find out combinatorial approaches with EGFR inhibitors and to bring new therapeutic agents with clinical efficacy. In this review we have outlined the role of EGFR in cancer, different types of EGFR inhibitors, preclinical and clinical status of EGFR inhibitors as well as summarized the recent efforts made in the field of molecular EGFR targeting.


Biotechnology Progress | 2006

Role of Caco-2 cell monolayers in prediction of intestinal drug absorption.

Pranav Shah; Viral Jogani; Tamishraha Bagchi; Ambikanandan Misra

The usefulness of Caco‐2 cell monolayers in determining the intestinal drug absorption of potential drug candidates as such and from delivery systems, elucidating the underlying mechanisms thereof, presystemic metabolism, cellular uptake and cytotoxicological assessment has been exemplified in this review. The role of Caco‐2 cell monolayers in studying the effectiveness, involved mechanism and toxicity of various excipients for drug absorption promotion has also been discussed.


Current Drug Delivery | 2005

Intranasal Drug Delivery for Brain Targeting

Tushar K. Vyas; Aliasgar Shahiwala; Sudhanva Marathe; Ambikanandan Misra

Many drugs are not being effectively and efficiently delivered using conventional drug delivery approach to brain or central nervous system (CNS) due to its complexity. The brain and the central nervous system both have limited accessibility to blood compartment due to a number of barriers. Many advanced and effective approaches to brain delivery of drugs have emerged in recent years. Intranasal drug delivery is one of the focused delivery options for brain targeting, as the brain and nose compartments are connected to each other via the olfactory route and via peripheral circulation. Realization of nose to brain transport and the therapeutic viability of this route can be traced from the ancient times and has been investigated for rapid and effective transport in the last two decades. Various models have been designed and studied by scientists to establish the qualitative and quantitative transport through nasal mucosa to brain. The development of nasal drug products for brain targeting is still faced with enormous challenges. A better understanding in terms of properties of the drug candidate, nose to brain transport mechanism, and transport to and within the brain is of utmost importance. This review will discuss some pertinent issues to be considered and challenges to brain targeted intranasal drug delivery. A few marketed and investigational drug formulations will also be discussed.


Drug Delivery | 2008

Wheat Germ Agglutinin-Conjugated Nanoparticles for Sustained Cellular and Lung Delivery of Budesonide

Naazneen Surti; Ambikanandan Misra

The purpose of our studies was to assess in vitro nanoparticles cellular uptake and cellular budesonide levels after treatment of alveolar epithelial cell lines with wheat germ agglutinin (WGA)-conjugated budesonide nanoparticles and pharmacokinetic evaluation of drug after intratracheal instillation of nanoparticles in rats. Confocal microscopy was used to study the cellular uptake of nanoparticles, and the cellular and lung tissue drug levels were estimated by HPLC. Higher amount of fluorescence observed in the cells treated with WGA nanoparticles, higher and sustained cellular drug levels, and better bioavailability in lungs of WGA-conjugated nanoparticles indicate superiority of WGA-conjugated nanoparticles over unconjugated nanoparticles.


Aaps Pharmscitech | 2006

Preliminary brain-targeting studies on intranasal mucoadhesive microemulsions of sumatriptan

Tushar K. Vyas; Anil Kumar Babbar; Rajvir Sharma; Shashi Singh; Ambikanandan Misra

The aim of this investigation was to prepare microemulsions containing sumatriptan (ST) and sumatriptan succinate (SS) to accomplish rapid delivery of drug to the brain in acute attacks of migraine and perform comparative in vivo evaluation in rats. Sumatriptan microemulsions (SME)/sumatriptan succinate microemulsions (SSME) were prepared using titration method and characterized for drug content, globule size and size distribution, and zeta potential. Biodistribution of SME, SSME, sumatriptan solution (SSS), and marketed product (SMP) in the brain and blood of Swiss albino rats following intranasal and intravenous (IV) administrations were examined using optimized technetium-labeled (99mTc-labeled) ST formulations. The pharmacokinetic parameters, drug targeting efficiency (DTE), and direct drug transport (DTP) were derived. Gamma scintigraphy imaging of rat brain following IV and intranasal administrations were performed to ascertain the localization of drug. SME and SSME were transparent and stable with mean globule size 38±20 nm and zeta potential between −35 to −55 mV. Brain/blood uptake ratios at 0.5 hour following IV administration of SME and intranasal administrations of SME, SMME, and SSS were found to be 0.20, 0.50, 0.60, and 0.26, respectively, suggesting effective transport of drug following intranasal administration of microemulsions. Higher DTE and DTP for mucoadhesive microemulsions indicated more effective targeting following intranasal administration and best brain targeting of ST from mucoadhesive microemulsions. Rat brain scintigraphy endorsed higher uptake of ST into the brain. Studies conclusively demonstrated rapid and larger extent of transport of microemulsion of ST compared with microemulsion of SS, SMP, and SSS into the rat brain. Hence, intranasal delivery of ST microemulsion developed in this investigation can play a promising role in the treatment of acute attacks of migraine.


Macromolecular Bioscience | 2010

In vitro and In vivo Evaluation of Docetaxel Loaded Biodegradable Polymersomes

Kamal Kumar Upadhyay; Anant Narayan Bhatt; Emilio Castro; Anil K. Mishra; Krishna Chuttani; Bilikere S. Dwarakanath; Christophe Schatz; Jean-François Le Meins; Ambikanandan Misra; Sébastien Lecommandoux

Formulation of docetaxel (DOC), a hydrophobic anticancer drug, was successfully achieved in poly(gamma-benzyl L-glutamate)-block-hyaluronan polymersomes using a simple and reproducible nanoprecipitation method. The prepared DOC loaded polymersomes (PolyDOC) was stable either in solution or in a lyophilized form, and showed controlled release behaviour over several days. PolyDOC showed high in vitro toxicity after 24 h in MCF-7 and U87 cells compared to free DOC. Biodistribution data demonstrated that (99m)Tc labelled PolyDOC t(1/2) and MRT significantly increased compared to a DOC solution (DS). In addition, PolyDOC uptake in Ehrlich Ascites Tumor (EAT) tumor bearing mice was larger at each time point compared to DS, making such a polymer vesicle formulation an efficient drug nanocarrier for improved DOC cancer therapy.


Journal of Drug Targeting | 2008

Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting

Mukesh Kumar; Ambikanandan Misra; Anurag Mishra; Pushpa Mishra; Kamla Pathak

The objective of the present study was to optimize olanzapine nanoemulsion (ONE), for nose-to-brain delivery. The nanoemulsions and olanzapine mucoadhesive nanoemulsions (OMNEs) were prepared using water titration method and characterized for technical and electrokinetic properties. Biodistribution of nanoemulsions and olanzapine solution (OS) in the brain and blood of rats following intranasal (intranasal) and intravenous (intravenous) administrations were examined using optimized technetium-labeled (99mTc-labeled) olanzapine formulations. The brain/blood uptake ratios of 0.45, 0.88, 0.80, and 0.04 of OS (intranasal), ONE (intranasal), OMNE (intranasal), ONE (intravenous), respectively, at 0.5 h are indicative of direct nose-to-brain transport (DTP). Higher % drug targeting efficiency (%DTE) and %DTP for mucoadhesive nanoemulsions indicated effective brain targeting of olanzapine among the prepared nanoemulsions. Gamma scintigraphy imaging of the rat brain conclusively demonstrated rapid and larger extent of transport of olanzapine by OMNE (intranasal), when compared with OS (intranasal), ONE (intranasal), and ONE (intravenous), into the rat brain.

Collaboration


Dive into the Ambikanandan Misra's collaboration.

Top Co-Authors

Avatar

Sushilkumar Patil

Maharaja Sayajirao University of Baroda

View shared research outputs
Top Co-Authors

Avatar

Imran Vhora

Maharaja Sayajirao University of Baroda

View shared research outputs
Top Co-Authors

Avatar

Priyanka Bhatt

Maharaja Sayajirao University of Baroda

View shared research outputs
Top Co-Authors

Avatar

Dipesh Baradia

Maharaja Sayajirao University of Baroda

View shared research outputs
Top Co-Authors

Avatar

Rohan Lalani

Maharaja Sayajirao University of Baroda

View shared research outputs
Top Co-Authors

Avatar

Sachin Naik

Maharaja Sayajirao University of Baroda

View shared research outputs
Top Co-Authors

Avatar

Jitendra Amrutiya

Maharaja Sayajirao University of Baroda

View shared research outputs
Top Co-Authors

Avatar

Deepa Patel

Maharaja Sayajirao University of Baroda

View shared research outputs
Top Co-Authors

Avatar

Bijay Kumar Padhi

Maharaja Sayajirao University of Baroda

View shared research outputs
Top Co-Authors

Avatar

Jigar Lalani

Maharaja Sayajirao University of Baroda

View shared research outputs
Researchain Logo
Decentralizing Knowledge