Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ambrosius P. Snijders is active.

Publication


Featured researches published by Ambrosius P. Snijders.


Science | 2008

Small CRISPR RNAs guide antiviral defense in prokaryotes

Stan J. J. Brouns; Matthijs M. Jore; Magnus Lundgren; Edze R. Westra; Rik Slijkhuis; Ambrosius P. Snijders; Mark J. Dickman; Kira S. Makarova; Eugene V. Koonin; John van der Oost

Prokaryotes acquire virus resistance by integrating short fragments of viral nucleic acid into clusters of regularly interspaced short palindromic repeats (CRISPRs). Here we show how virus-derived sequences contained in CRISPRs are used by CRISPR-associated (Cas) proteins from the host to mediate an antiviral response that counteracts infection. After transcription of the CRISPR, a complex of Cas proteins termed Cascade cleaves a CRISPR RNA precursor in each repeat and retains the cleavage products containing the virus-derived sequence. Assisted by the helicase Cas3, these mature CRISPR RNAs then serve as small guide RNAs that enable Cascade to interfere with virus proliferation. Our results demonstrate that the formation of mature guide RNAs by the CRISPR RNA endonuclease subunit of Cascade is a mechanistic requirement for antiviral defense.


Nature Cell Biology | 2013

A complex secretory program orchestrated by the inflammasome controls paracrine senescence

Juan Carlos Acosta; Ana Banito; Torsten Wuestefeld; Athena Georgilis; Peggy Janich; Jennifer P. Morton; Dimitris Athineos; Tae-Won Kang; Felix Lasitschka; Mindaugas Andrulis; Gloria Pascual; Kelly J. Morris; Sadaf Khan; Hong Jin; Gopuraja Dharmalingam; Ambrosius P. Snijders; Thomas J. Carroll; David Capper; Catrin Pritchard; Gareth J. Inman; Thomas Longerich; Owen J. Sansom; Lars Zender; Jesús Gil

Oncogene-induced senescence (OIS) is crucial for tumour suppression. Senescent cells implement a complex pro-inflammatory response termed the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence, activates immune surveillance and paradoxically also has pro-tumorigenic properties. Here, we present evidence that the SASP can also induce paracrine senescence in normal cells both in culture and in human and mouse models of OIS in vivo. Coupling quantitative proteomics with small-molecule screens, we identified multiple SASP components mediating paracrine senescence, including TGF-β family ligands, VEGF, CCL2 and CCL20. Amongst them, TGF-β ligands play a major role by regulating p15INK4b and p21CIP1. Expression of the SASP is controlled by inflammasome-mediated IL-1 signalling. The inflammasome and IL-1 signalling are activated in senescent cells and IL-1α expression can reproduce SASP activation, resulting in senescence. Our results demonstrate that the SASP can cause paracrine senescence and impact on tumour suppression and senescence in vivo.


Nature Structural & Molecular Biology | 2011

Structural basis for CRISPR RNA-guided DNA recognition by Cascade

Matthijs M. Jore; Magnus Lundgren; Esther van Duijn; Jelle B. Bultema; Edze R. Westra; Sakharam Waghmare; Blake Wiedenheft; Ümit Pul; Reinhild Wurm; Rolf Wagner; Marieke R Beijer; Arjan Barendregt; Kaihong Zhou; Ambrosius P. Snijders; Mark J. Dickman; Jennifer A. Doudna; Egbert J. Boekema; Albert J. R. Heck; John van der Oost; Stan J. J. Brouns

The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA1B2C6D1E1) and a 61-nucleotide CRISPR RNA (crRNA) with 5′-hydroxyl and 2′,3′-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.


Nature | 2014

DNA-guided DNA interference by a prokaryotic Argonaute

Daan C. Swarts; Matthijs M. Jore; Edze R. Westra; Yifan Zhu; Jorijn H. Janssen; Ambrosius P. Snijders; Yanli Wang; Dinshaw J. Patel; José Berenguer; Stan J. J. Brouns; John van der Oost

RNA interference is widely distributed in eukaryotes and has a variety of functions, including antiviral defence and gene regulation. All RNA interference pathways use small single-stranded RNA (ssRNA) molecules that guide proteins of the Argonaute (Ago) family to complementary ssRNA targets: RNA-guided RNA interference. The role of prokaryotic Ago variants has remained elusive, although bioinformatics analysis has suggested their involvement in host defence. Here we demonstrate that Ago of the bacterium Thermus thermophilus (TtAgo) acts as a barrier for the uptake and propagation of foreign DNA. In vivo, TtAgo is loaded with 5′-phosphorylated DNA guides, 13–25 nucleotides in length, that are mostly plasmid derived and have a strong bias for a 5′-end deoxycytidine. These small interfering DNAs guide TtAgo to cleave complementary DNA strands. Hence, despite structural homology to its eukaryotic counterparts, TtAgo functions in host defence by DNA-guided DNA interference.


Cell Stem Cell | 2012

MicroRNA Regulation of Cbx7 Mediates a Switch of Polycomb Orthologs during ESC Differentiation

Ana O'Loghlen; Ana M. Muñoz-Cabello; Alexandre Gaspar-Maia; Hsan-Au Wu; Ana Banito; Natalia Kunowska; Tomas Racek; Helen Pemberton; Patrizia Beolchi; Fabrice Lavial; Osamu Masui; Michiel Vermeulen; Thomas Carroll; Johannes Graumann; Edith Heard; Niall Dillon; Véronique Azuara; Ambrosius P. Snijders; Gordon Peters; Emily Bernstein; Jesús Gil

Summary The Polycomb Group (PcG) of chromatin modifiers regulates pluripotency and differentiation. Mammalian genomes encode multiple homologs of the Polycomb repressive complex 1 (PRC1) components, including five orthologs of the Drosophila Polycomb protein (Cbx2, Cbx4, Cbx6, Cbx7, and Cbx8). We have identified Cbx7 as the primary Polycomb ortholog of PRC1 complexes in embryonic stem cells (ESCs). The expression of Cbx7 is downregulated during ESC differentiation, preceding the upregulation of Cbx2, Cbx4, and Cbx8, which are directly repressed by Cbx7. Ectopic expression of Cbx7 inhibits differentiation and X chromosome inactivation and enhances ESC self-renewal. Conversely, Cbx7 knockdown induces differentiation and derepresses lineage-specific markers. In a functional screen, we identified the miR-125 and miR-181 families as regulators of Cbx7 that are induced during ESC differentiation. Ectopic expression of these miRNAs accelerates ESC differentiation via regulation of Cbx7. These observations establish a critical role for Cbx7 and its regulatory miRNAs in determining pluripotency.


Molecular & Cellular Proteomics | 2005

Gametes Alter the Oviductal Secretory Proteome

A. Stephen Georgiou; Edita Sostaric; Chi H. Wong; Ambrosius P. Snijders; Phillip C. Wright; Harry Moore; Alireza Fazeli

The mammalian oviduct provides an optimal environment for the maturation of gametes, fertilization, and early embryonic development. Secretory cells lining the lumen of the mammalian oviduct synthesize and secrete proteins that have been shown to interact with and influence the activities of gametes and embryos. We hypothesized that the presence of gametes in the oviduct alters the oviductal secretory proteomic profile. We used a combination of two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry to identify oviductal protein secretions that were altered in response to the presence of gametes in the oviduct. The oviductal response to spermatozoa was different from its response to oocytes as verified by Western blotting. The presence of spermatozoa or oocytes in the oviduct altered the secretion of specific proteins. Most of these proteins are known to have an influence on gamete maturation, viability, and function, and there is evidence to suggest these proteins may prepare the oviductal environment for arrival of the zygote. Our findings suggest the presence of a gamete recognition system within the oviduct capable of distinguishing between spermatozoa and oocytes.


Current Biology | 2009

UIF, a New mRNA Export Adaptor that Works Together with REF/ALY, Requires FACT for Recruitment to mRNA

Guillaume M. Hautbergue; Ming-Lung Hung; Matthew J. Walsh; Ambrosius P. Snijders; Chung-Te Chang; Rachel S. Jones; Chris P. Ponting; Mark J. Dickman; Stuart A. Wilson

Summary Messenger RNA (mRNA) export adaptors play an important role in the transport of mRNA from the nucleus to the cytoplasm. They couple early mRNA processing events such as 5′ capping and 3′ end formation with loading of the TAP/NXF1 export receptor onto mRNA. The canonical adaptor REF/ALY/Yra1 is recruited to mRNA via UAP56 and subsequently delivers the mRNA to NXF1 [1]. Knockdown of UAP56 [2, 3] and NXF1 [4–7] in higher eukaryotes efficiently blocks mRNA export, whereas knockdown of REF only causes a modest reduction, suggesting the existence of additional adaptors [8–10]. Here we identify a new UAP56-interacting factor, UIF, which functions as an export adaptor, binding NXF1 and delivering mRNA to the nuclear pore. REF and UIF are simultaneously found on the same mRNA molecules, and both proteins are required for efficient export of mRNA. We show that the histone chaperone FACT specifically binds UIF, but not REF, via the SSRP1 subunit, and this interaction is required for recruitment of UIF to mRNA. Together the results indicate that REF and UIF represent key human adaptors for the export of cellular mRNAs via the UAP56-NXF1 pathway.


Journal of Biological Chemistry | 2006

Identification of the missing links in prokaryotic pentose oxidation pathways: evidence for enzyme recruitment

Stan J. J. Brouns; Jasper Walther; Ambrosius P. Snijders; Harmen J. G. van de Werken; Hanneke L. D. M. Willemen; Petra Worm; Marjon G. J. de Vos; Anders F. Andersson; Magnus Lundgren; Hortense Mazon; Robert H. H. van den Heuvel; Peter Nilsson; Laurent Salmon; Willem M. de Vos; Phillip C. Wright; Rolf Bernander; John van der Oost

The pentose metabolism of Archaea is largely unknown. Here, we have employed an integrated genomics approach including DNA microarray and proteomics analyses to elucidate the catabolic pathway for d-arabinose in Sulfolobus solfataricus. During growth on this sugar, a small set of genes appeared to be differentially expressed compared with growth on d-glucose. These genes were heterologously overexpressed in Escherichia coli, and the recombinant proteins were purified and biochemically studied. This showed that d-arabinose is oxidized to 2-oxoglutarate by the consecutive action of a number of previously uncharacterized enzymes, including a d-arabinose dehydrogenase, a d-arabinonate dehydratase, a novel 2-keto-3-deoxy-d-arabinonate dehydratase, and a 2,5-dioxopentanoate dehydrogenase. Promoter analysis of these genes revealed a palindromic sequence upstream of the TATA box, which is likely to be involved in their concerted transcriptional control. Integration of the obtained biochemical data with genomic context analysis strongly suggests the occurrence of pentose oxidation pathways in both Archaea and Bacteria, and predicts the involvement of additional enzyme components. Moreover, it revealed striking genetic similarities between the catabolic pathways for pentoses, hexaric acids, and hydroxyproline degradation, which support the theory of metabolic pathway genesis by enzyme recruitment.


The EMBO Journal | 2016

TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic

Christopher A. Lamb; Stefanie Nühlen; Delphine Judith; David Frith; Ambrosius P. Snijders; Christian Behrends; Sharon A. Tooze

Macroautophagy requires membrane trafficking and remodelling to form the autophagosome and deliver its contents to lysosomes for degradation. We have previously identified the TBC domain‐containing protein, TBC1D14, as a negative regulator of autophagy that controls delivery of membranes from RAB11‐positive recycling endosomes to forming autophagosomes. In this study, we identify the TRAPP complex, a multi‐subunit tethering complex and GEF for RAB1, as an interactor of TBC1D14. TBC1D14 binds to the TRAPP complex via an N‐terminal 103 amino acid region, and overexpression of this region inhibits both autophagy and secretory traffic. TRAPPC8, the mammalian orthologue of a yeast autophagy‐specific TRAPP subunit, forms part of a mammalian TRAPPIII‐like complex and both this complex and TBC1D14 are needed for RAB1 activation. TRAPPC8 modulates autophagy and secretory trafficking and is required for TBC1D14 to bind TRAPPIII. Importantly, TBC1D14 and TRAPPIII regulate ATG9 trafficking independently of ULK1. We propose a model whereby TBC1D14 and TRAPPIII regulate a constitutive trafficking step from peripheral recycling endosomes to the early Golgi, maintaining the cycling pool of ATG9 required for initiation of autophagy.


The EMBO Journal | 2014

Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication.

Kin Fan On; Fabienne Beuron; David Frith; Ambrosius P. Snijders; Edward P. Morris; John F. X. Diffley

Eukaryotic DNA replication initiates from multiple replication origins. To ensure each origin fires just once per cell cycle, initiation is divided into two biochemically discrete steps: the Mcm2‐7 helicase is first loaded into prereplicative complexes (pre‐RCs) as an inactive double hexamer by the origin recognition complex (ORC), Cdt1 and Cdc6; the helicase is then activated by a set of “firing factors.” Here, we show that plasmids containing pre‐RCs assembled with purified proteins support complete and semi‐conservative replication in extracts from budding yeast cells overexpressing firing factors. Replication requires cyclin‐dependent kinase (CDK) and Dbf4‐dependent kinase (DDK). DDK phosphorylation of Mcm2‐7 does not by itself promote separation of the double hexamer, but is required for the recruitment of firing factors and replisome components in the extract. Plasmid replication does not require a functional replication origin; however, in the presence of competitor DNA and limiting ORC concentrations, replication becomes origin‐dependent in this system. These experiments indicate that Mcm2‐7 double hexamers can be precursors of replication and provide insight into the nature of eukaryotic DNA replication origins.

Collaboration


Dive into the Ambrosius P. Snijders's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stan J. J. Brouns

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

John van der Oost

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Frith

Francis Crick Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jasper Walther

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge