Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amed Ouattara is active.

Publication


Featured researches published by Amed Ouattara.


The New England Journal of Medicine | 2011

A Field Trial to Assess a Blood-Stage Malaria Vaccine

Mahamadou A. Thera; Ogobara K. Doumbo; Drissa Coulibaly; Matthew B. Laurens; Amed Ouattara; Abdoulaye K. Kone; Ando Guindo; Karim Traore; Idrissa Traore; Bourema Kouriba; Dapa A. Diallo; Issa Diarra; Modibo Daou; Amagana Dolo; Youssouf Tolo; Mahamadou S Sissoko; Amadou Niangaly; Mady Sissoko; Shannon Takala-Harrison; Kirsten E. Lyke; Yukun Wu; William C. Blackwelder; Olivier Godeaux; Johan Vekemans; Marie-Claude Dubois; W. Ripley Ballou; Joe Cohen; Darby Thompson; Tina Dube; Lorraine Soisson

BACKGROUND Blood-stage malaria vaccines are intended to prevent clinical disease. The malaria vaccine FMP2.1/AS02(A), a recombinant protein based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, has previously been shown to have immunogenicity and acceptable safety in Malian adults and children. METHODS In a double-blind, randomized trial, we immunized 400 Malian children with either the malaria vaccine or a control (rabies) vaccine and followed them for 6 months. The primary end point was clinical malaria, defined as fever and at least 2500 parasites per cubic millimeter of blood. A secondary end point was clinical malaria caused by parasites with the AMA1 DNA sequence found in the vaccine strain. RESULTS The cumulative incidence of the primary end point was 48.4% in the malaria-vaccine group and 54.4% in the control group; efficacy against the primary end point was 17.4% (hazard ratio for the primary end point, 0.83; 95% confidence interval [CI], 0.63 to 1.09; P=0.18). Efficacy against the first and subsequent episodes of clinical malaria, as defined on the basis of various parasite-density thresholds, was approximately 20%. Efficacy against clinical malaria caused by parasites with AMA1 corresponding to that of the vaccine strain was 64.3% (hazard ratio, 0.36; 95% CI, 0.08 to 0.86; P=0.03). Local reactions and fever after vaccination were more frequent with the malaria vaccine. CONCLUSIONS On the basis of the primary end point, the malaria vaccine did not provide significant protection against clinical malaria, but on the basis of secondary results, it may have strain-specific efficacy. If this finding is confirmed, AMA1 might be useful in a multicomponent malaria vaccine. (Funded by the National Institute of Allergy and Infectious Diseases and others; ClinicalTrials.gov number, NCT00460525.).


American Journal of Tropical Medicine and Hygiene | 2012

False-Negative Rapid Diagnostic Tests for Malaria and Deletion of the Histidine-Rich Repeat Region of the hrp2 Gene

Ousmane Koita; Ogobara K. Doumbo; Amed Ouattara; Lalla K. Tall; Aoua Konaré; Mahamadou Diakite; Mouctar Diallo; Issaka Sagara; Godfred L. Masinde; Safiatou Doumbo; Amagana Dolo; Anatole Tounkara; Issa Traoré; Donald J. Krogstad

We identified 480 persons with positive thick smears for asexual Plasmodium falciparum parasites, of whom 454 had positive rapid diagnostic tests (RDTs) for the histidine-rich protein 2 (HRP2) product of the hrp2 gene and 26 had negative tests. Polymerase chain reaction (PCR) amplification for the histidine-rich repeat region of that gene was negative in one-half (10/22) of false-negative specimens available, consistent with spontaneous deletion. False-negative RDTs were found only in persons with asymptomatic infections, and multiplicities of infection (MOIs) were lower in persons with false-negative RDTs (both P < 0.001). These results show that parasites that fail to produce HRP2 can cause patent bloodstream infections and false-negative RDT results. The importance of these observations is likely to increase as malaria control improves, because lower MOIs are associated with false-negative RDTs and false-negative RDTs are more frequent in persons with asymptomatic infections. These findings suggest that the use of HRP2-based RDTs should be reconsidered.


PLOS Medicine | 2007

Dynamics of polymorphism in a malaria vaccine antigen at a vaccine-testing site in Mali.

Shannon L. Takala; Drissa Coulibaly; Mahamadou A. Thera; Alassane Dicko; David L. Smith; Ando Guindo; Abdoulaye K. Kone; Karim Traore; Amed Ouattara; Abdoulaye Djimde; Paul S. Sehdev; Kirsten E. Lyke; Dapa A. Diallo; Ogobara K. Doumbo; Christopher V. Plowe

Background Malaria vaccines based on the 19-kDa region of merozoite surface protein 1 (MSP-119) derived from the 3D7 strain of Plasmodium falciparum are being tested in clinical trials in Africa. Knowledge of the distribution and natural dynamics of vaccine antigen polymorphisms in populations in which malaria vaccines will be tested will guide vaccine design and permit distinction between natural fluctuations in genetic diversity and vaccine-induced selection. Methods and Findings Using pyrosequencing, six single-nucleotide polymorphisms in the nucleotide sequence encoding MSP-119 were genotyped from 1,363 malaria infections experienced by 100 children who participated in a prospective cohort study in Mali from 1999 to 2001. The frequencies of 14 MSP-119 haplotypes were compared over the course of the malaria transmission season for all three years, in three age groups, and in consecutive infections within individuals. While the frequency of individual MSP-119 haplotypes fluctuated, haplotypes corresponding to FVO and FUP strains of P. falciparum (MSP-119 haplotypes QKSNGL and EKSNGL, respectively) were most prevalent during three consecutive years and in all age groups with overall prevalences of 46% (95% confidence interval [CI] 44%–49%) and 36% (95% CI 34%–39%), respectively. The 3D7 haplotype had a lower overall prevalence of 16% (95% CI 14%–18%). Multiplicity of infection based on MSP-119 was higher at the beginning of the transmission season and in the oldest individuals (aged ≥11 y). Three MSP-119 haplotypes had a reduced frequency in symptomatic infections compared to asymptomatic infections. Analyses of the dynamics of MSP-119 polymorphisms in consecutive infections implicate three polymorphisms (at positions 1691, 1700, and 1701) as being particularly important in determining allele specificity of anti-MSP-119 immunity. Conclusions Parasites with MSP-119 haplotypes different from that of the leading vaccine strain were consistently the most prevalent at a vaccine trial site. If immunity elicited by an MSP-1-based vaccine is allele-specific, a vaccine based on either the FVO or FUP strain might have better initial efficacy at this site. This study, to our knowledge the largest of its kind to date, provides molecular information needed to interpret population responses to MSP-1-based vaccines and suggests that certain MSP-119 polymorphisms may be relevant to cross-protective immunity.


The Journal of Infectious Diseases | 2013

Molecular Basis of Allele-Specific Efficacy of a Blood-Stage Malaria Vaccine: Vaccine Development Implications

Amed Ouattara; Shannon Takala-Harrison; Mahamadou A. Thera; Drissa Coulibaly; Amadou Niangaly; Renion Saye; Youssouf Tolo; Sheetij Dutta; D. Gray Heppner; Lorraine Soisson; Carter Diggs; Johan Vekemans; Joe Cohen; William C. Blackwelder; Tina Dube; Matthew B. Laurens; Ogobara K. Doumbo; Christopher V. Plowe

The disappointing efficacy of blood-stage malaria vaccines may be explained in part by allele-specific immune responses that are directed against polymorphic epitopes on blood-stage antigens. FMP2.1/AS02(A), a blood-stage candidate vaccine based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, had allele-specific efficacy against clinical malaria in a phase II trial in Malian children. We assessed the cross-protective efficacy of the malaria vaccine and inferred which polymorphic amino acid positions in AMA1 were the targets of protective allele-specific immune responses. FMP2.1/AS02(A) had the highest efficacy against AMA1 alleles that were identical to the 3D7 vaccine-type allele at 8 highly polymorphic amino acid positions in the cluster 1 loop (c1L) but differed from 3D7 elsewhere in the molecule. Comparison of the incidence of vaccine-type alleles before and after vaccination in the malaria vaccine and control groups and examination of the patterns of allele change at polymorphic positions in consecutive malaria episodes suggest that the highly polymorphic amino acid position 197 in c1L was the most critical determinant of allele-specific efficacy. These results indicate that a multivalent AMA1 vaccine with broad efficacy could include only a limited set of key alleles of this extremely polymorphic antigen.


Malaria Journal | 2010

Lack of allele-specific efficacy of a bivalent AMA1 malaria vaccine

Amed Ouattara; Jianbing Mu; Shannon Takala-Harrison; Renion Saye; Issaka Sagara; Alassane Dicko; Amadou Niangaly; Junhui Duan; Ruth D. Ellis; Louis H. Miller; Xin-Zhuan Su; Christopher V. Plowe; Ogobara K. Doumbo

BackgroundExtensive genetic diversity in vaccine antigens may contribute to the lack of efficacy of blood stage malaria vaccines. Apical membrane antigen-1 (AMA1) is a leading blood stage malaria vaccine candidate with extreme diversity, potentially limiting its efficacy against infection and disease caused by Plasmodium falciparum parasites with diverse forms of AMA1.MethodsThree hundred Malian children participated in a Phase 2 clinical trial of a bivalent malaria vaccine that found no protective efficacy. The vaccine consists of recombinant AMA1 based on the 3D7 and FVO strains of P. falciparum adjuvanted with aluminum hydroxide (AMA1-C1). The gene encoding AMA1 was sequenced from P. falciparum infections experienced before and after immunization with the study vaccine or a control vaccine. Sequences of ama1 from infections in the malaria vaccine and control groups were compared with regard to similarity to the vaccine antigens using several measures of genetic diversity. Time to infection with parasites carrying AMA1 haplotypes similar to the vaccine strains with respect to immunologically important polymorphisms and the risk of infection with vaccine strain haplotypes were compared.ResultsBased on 62 polymorphic AMA1 residues, 186 unique ama1 haplotypes were identified among 315 ama1 sequences that were included in the analysis. Eight infections had ama1 sequences identical to 3D7 while none were identical to FVO. Several measures of genetic diversity showed that ama1 sequences in the malaria vaccine and control groups were comparable both at baseline and during follow up period. Pre- and post-immunization ama1 sequences in both groups all had a similar degree of genetic distance from FVO and 3D7 ama1. No differences were found in the time of first clinical episode or risk of infection with an AMA1 haplotype similar to 3D7 or FVO with respect to a limited set of immunologically important polymorphisms found in the cluster 1 loop of domain I of AMA1.ConclusionThis Phase 2 trial of a bivalent AMA1 malaria vaccine found no evidence of vaccine selection or strain-specific efficacy, suggesting that the extreme genetic diversity of AMA1 did not account for failure of the vaccine to provide protection.


American Journal of Tropical Medicine and Hygiene | 2015

Polymorphisms in the K13-Propeller Gene in Artemisinin-Susceptible Plasmodium falciparum Parasites from Bougoula-Hameau and Bandiagara, Mali

Amed Ouattara; Aminatou Kone; Matthew Adams; Bakary Fofana; Amelia W. Maiga; Shay Hampton; Drissa Coulibaly; Mahamadou A. Thera; Nouhoum Diallo; Antoine Dara; Issaka Sagara; José Pedro Gil; Anders Björkman; Shannon Takala-Harrison; Ogobara K. Doumbo; Christopher V. Plowe; Abdoulaye Djimde

Artemisinin-resistant Plasmodium falciparum malaria has been documented in southeast Asia and may already be spreading in that region. Molecular markers are important tools for monitoring the spread of antimalarial drug resistance. Recently, single-nucleotide polymorphisms (SNPs) in the PF3D7_1343700 kelch propeller (K13-propeller) domain were shown to be associated with artemisinin resistance in vivo and in vitro. The prevalence and role of K13-propeller mutations are poorly known in sub-Saharan Africa. K13-propeller mutations were genotyped by direct sequencing of nested polymerase chain reaction (PCR) amplicons from dried blood spots of pre-treatment falciparum malaria infections collected before and after the use of artemisinin-based combination therapy (ACT) as first-line therapy in Mali. Although K13-propeller mutations previously associated with delayed parasite clearance in Cambodia were not identified, 26 K13-propeller mutations were identified in both recent samples and pre-ACT infections. Parasite clearance time was comparable between infections with non-synonymous K13-propeller mutations and infections with the reference allele. These findings suggest that K13-propeller mutations are present in artemisinin-sensitive parasites and that they preceded the wide use of ACTs in Mali.


Clinical Infectious Diseases | 2015

Vaccines Against Malaria

Amed Ouattara; Matthew B. Laurens

Despite global efforts to control malaria, the illness remains a significant public health threat. Currently, there is no licensed vaccine against malaria, but an efficacious vaccine would represent an important public health tool for successful malaria elimination. Malaria vaccine development continues to be hindered by a poor understanding of antimalarial immunity, a lack of an immune correlate of protection, and the genetic diversity of malaria parasites. Current vaccine development efforts largely target Plasmodium falciparum parasites in the pre-erythrocytic and erythrocytic stages, with some research on transmission-blocking vaccines against asexual stages and vaccines against pregnancy-associated malaria. The leading pre-erythrocytic vaccine candidate is RTS,S, and early results of ongoing Phase 3 testing show overall efficacy of 46% against clinical malaria. The next steps for malaria vaccine development will focus on the design of a product that is efficacious against the highly diverse strains of malaria and the identification of a correlate of protection against disease.


PLOS ONE | 2013

Extended Safety, Immunogenicity and Efficacy of a Blood-Stage Malaria Vaccine in Malian Children: 24-Month Follow-Up of a Randomized, Double-Blinded Phase 2 Trial

Matthew B. Laurens; Mahamadou A. Thera; Drissa Coulibaly; Amed Ouattara; Abdoulaye K. Kone; Ando Guindo; Karim Traore; Idrissa Traore; Bourema Kouriba; Dapa A. Diallo; Issa Diarra; Modibo Daou; Amagana Dolo; Youssouf Tolo; Mahamadou S Sissoko; Amadou Niangaly; Mady Sissoko; Shannon Takala-Harrison; Kirsten E. Lyke; Yukun Wu; William C. Blackwelder; Olivier Godeaux; Johan Vekemans; Marie-Claude Dubois; W. Ripley Ballou; Joe Cohen; Tina Dube; Lorraine Soisson; Carter Diggs; Brent House

Background The FMP2.1/AS02A candidate malaria vaccine was tested in a Phase 2 study in Mali. Based on results from the first eight months of follow-up, the vaccine appeared well-tolerated and immunogenic. It had no significant efficacy based on the primary endpoint, clinical malaria, but marginal efficacy against clinical malaria in secondary analyses, and high allele-specific efficacy. Extended follow-up was conducted to evaluate extended safety, immunogenicity and efficacy. Methods A randomized, double-blinded trial of safety, immunogenicity and efficacy of the candidate Plasmodium falciparum apical membrane antigen 1 (AMA1) vaccine FMP2.1/AS02A was conducted in Bandiagara, Mali. Children aged 1–6 years were randomized in a 1∶1 ratio to receive FMP2.1/AS02A or control rabies vaccine on days 0, 30 and 60. Using active and passive surveillance, clinical malaria and adverse events as well as antibodies against P. falciparum AMA1 were monitored for 24 months after the first vaccination, spanning two malaria seasons. Findings 400 children were enrolled. Serious adverse events occurred in nine participants in the FMP2.1/AS02A group and three in the control group; none was considered related to study vaccination. After two years, anti-AMA1 immune responses remained significantly higher in the FMP2.1/AS02A group than in the control group. For the entire 24-month follow-up period, vaccine efficacy was 7.6% (p = 0.51) against first clinical malaria episodes and 9.9% (p = 0.19) against all malaria episodes. For the final 16-month follow-up period, vaccine efficacy was 0.9% (p = 0.98) against all malaria episodes. Allele-specific efficacy seen in the first malaria season did not extend into the second season of follow-up. Interpretation Allele-specific vaccine efficacy was not sustained in the second malaria season, despite continued high levels of anti-AMA1 antibodies. This study presents an opportunity to evaluate correlates of partial protection against clinical malaria that waned during the second malaria season. Trial Registration Clinicaltrials.gov NCT00460525 NCT00460525


Vaccine | 2015

Designing malaria vaccines to circumvent antigen variability

Amed Ouattara; Alyssa E. Barry; Sheetij Dutta; Edmond J. Remarque; James G. Beeson; Christopher V. Plowe

Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines.


American Journal of Tropical Medicine and Hygiene | 2015

Seroreactivity to a Large Panel of Field-Derived Plasmodium falciparum Apical Membrane Antigen 1 and Merozoite Surface Protein 1 Variants Reflects Seasonal and Lifetime Acquired Responses to Malaria

Jason A. Bailey; Jozelyn Pablo; Amadou Niangaly; Mark A. Travassos; Amed Ouattara; Drissa Coulibaly; Matthew B. Laurens; Shannon Takala-Harrison; Kirsten E. Lyke; Jeff Skinner; Andrea A. Berry; Algis Jasinskas; Rie Nakajima-Sasaki; Bourema Kouriba; Mahamadou A. Thera; Philip L. Felgner; Ogobara K. Doumbo; Christopher V. Plowe

Parasite antigen diversity poses an obstacle to developing an effective malaria vaccine. A protein microarray containing Plasmodium falciparum apical membrane antigen 1 (AMA1, n = 57) and merozoite surface protein 1 19-kD (MSP119, n = 10) variants prevalent at a malaria vaccine testing site in Bandiagara, Mali, was used to assess changes in seroreactivity caused by seasonal and lifetime exposure to malaria. Malian adults had significantly higher magnitude and breadth of seroreactivity to variants of both antigens than did Malian children. Seroreactivity increased over the course of the malaria season in children and adults, but the difference was more dramatic in children. These results help to validate diversity-covering protein microarrays as a promising tool for measuring the breadth of antibody responses to highly variant proteins, and demonstrate the potential of this new tool to help guide the development of malaria vaccines with strain-transcending efficacy.

Collaboration


Dive into the Amed Ouattara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ogobara K. Doumbo

University of the Sciences

View shared research outputs
Top Co-Authors

Avatar

Amadou Niangaly

University of the Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bourema Kouriba

University of the Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge