Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amedeo Amedei is active.

Publication


Featured researches published by Amedeo Amedei.


Journal of Experimental Medicine | 2003

The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms

Marianna Boncristiano; Silvia Rossi Paccani; Silvia Barone; Cristina Ulivieri; Laura Patrussi; Dag Ilver; Amedeo Amedei; Mario M. D'Elios; John L. Telford; Cosima T. Baldari

Helicobacter pylori toxin, VacA, damages the gastric epithelium by erosion and loosening of tight junctions. Here we report that VacA also interferes with T cell activation by two different mechanisms. Formation of anion-specific channels by VacA prevents calcium influx from the extracellular milieu. The transcription factor NF-AT thus fails to translocate to the nucleus and activate key cytokine genes. A second, channel-independent mechanism involves activation of intracellular signaling through the mitogen-activated protein kinases MKK3/6 and p38 and the Rac-specific nucleotide exchange factor, Vav. As a consequence of aberrant Rac activation, disordered actin polymerization is stimulated. The resulting defects in T cell activation may help H. pylori to prevent an effective immune response leading to chronic colonization of its gastric niche.


Journal of Clinical Investigation | 2006

The neutrophil-activating protein of Helicobacter pylori promotes Th1 immune responses

Amedeo Amedei; Andrea Cappon; Gaia Codolo; Anna Cabrelle; Alessandra Polenghi; Marisa Benagiano; Elisabetta Tasca; Annalisa Azzurri; Mario Milco D’Elios; Gianfranco Del Prete; Marina de Bernard

The Helicobacter pylori neutrophil-activating protein (HP-NAP) is a virulence factor of H. pylori that stimulates in neutrophils high production of oxygen radicals and adhesion to endothelial cells. We report here that HP-NAP is a TLR2 agonist able to induce the expression of IL-12 and IL-23 by neutrophils and monocytes. Addition in culture of HP-NAP, as an immune modulator, to antigen-induced T cell lines resulted in a remarkable increase in the number of IFN-gamma-producing T cells and decrease of IL-4-secreting cells, thus shifting the cytokine profile of antigen-activated human T cells from Th2 to a Th1 cytotoxic phenotype. We also found that in vivo HP-NAP elicited an antigen-specific Th1-polarized T cell response in the gastric mucosa of H. pylori-infected patients. These data indicate HP-NAP as an important factor of H. pylori able to elicit cells of the innate immune system to produce IL-12 and IL-23, and they suggest it as a new tool for promoting Th1 immune responses.


European Journal of Immunology | 2001

Neonatal bacillus Calmette-Guérin vaccination induces adult-like IFN-gamma production by CD4+ T lymphocytes

Johan Vekemans; Amedeo Amedei; Martin O. C. Ota; Mario M. D'Elios; Tessa Goetghebuer; Jamila Ismaili; Melanie J. Newport; Gianfranco Del Prete; Michel Goldman; Keith P. W. J. McAdam; Arnaud Mayant

The immaturity of the neonatal immune system in mice is associated with defective IFN‐γ production and Th2‐biased immune responses. In this study, infants vaccinated at birth with BCG produced similar concentrations of IFN‐γ in response to PPD and showed similar frequencies of IFN‐γ‐producing lymphocytes as compared to immune adults. Infants and adults produced only low concentrations of IL‐4 and IL‐5. CD4+ T lymphocytes were the main source of IFN‐γ. Similar proportions of Th1 and Th0 PPD‐specific T cell clones were observed in infants and adults. This study demonstrates that the human neonatal immune response to BCG is not biased towards Th2 and is characterized by the predominant production of IFN‐γ by CD4+ T lymphocytes.


Journal of Experimental Medicine | 2003

Molecular Mimicry between Helicobacter pylori Antigens and H+,K+–Adenosine Triphosphatase in Human Gastric Autoimmunity

Amedeo Amedei; Mathijs P. Bergman; Ben J. Appelmelk; Annalisa Azzurri; Marisa Benagiano; Carlo Tamburini; Ruurd van der Zee; John L. Telford; Christina M. J. E. Vandenbroucke-Grauls; Mario M. D'Elios; Gianfranco Del Prete

Autoimmune gastritis and Helicobacter pylori–associated gastric atrophy develop through similar mechanisms involving the proton pump H+,K+–adenosine triphosphatase as autoantigen. Here, we report that H. pylori–infected patients with gastric autoimmunity harbor in vivo–activated gastric CD4+ T cells that recognize both H+,K+–adenosine triphosphatase and H. pylori antigens. We characterized the submolecular specificity of such gastric T cells and identified cross-reactive epitopes from nine H. pylori proteins. Cross-reactive H. pylori peptides induced T cell proliferation and expression of T helper type 1 functions. We suggest that in genetically susceptible individuals, H. pylori infection can activate cross-reactive gastric T cells leading to gastric autoimmunity via molecular mimicry.


European Journal of Immunology | 2002

Active tuberculosis in Africa is associated with reduced Th1 and increased Th2 activity in vivo

Christian Lienhardt; Annalisa Azzurri; Amedeo Amedei; Katherine Fielding; Jackson Sillah; Oumou Sow; Boubacar Bah; Marisa Benagiano; Alimou Diallo; Roberto Manetti; Kebba Manneh; Per Gustafson; Steve Bennett; Mario M. D'Elios; Keith P. W. J. McAdam; Gianfranco Del Prete

Activation of Th1 lymphocytes, IFN‐γ production and macrophage activation are crucial in defense against Mycobacteria. In developing countries, Th2 activation and IL‐4 production have been associated in vitro with tuberculosis and with poor clinical outcome after treatment. Serological markers of Th1 [soluble lymphocyte activation gene (LAG)‐3] and Th2 (IgE, solubleCD30, and CCL22/macrophage‐derived chemokine) activity were measured in 414 HIV‐negative tuberculosis patients from The Gambia and Guinée and in 414 healthy household and community controls. Measurements were repeated during treatment to assess the effect of therapy on Th1/Th2 ratio. At diagnosis, sLAG‐3 levels were lower in patients than in community controls (p<0.0001), but were higher in household controls exposed to contact with patients than in community controls (p<0.0001). In comparison with community controls, patients had consistently higher levels of IgE, sCD30, and CCL22 (p<0.0001), whereas household controls had lower levels of indicators of Th2 activity (p<0.0001). After treatment, cured patients had higher levels of Th1 (p<0.0001) and lower levels of Th2 (p<0.0001) activity than patients who were not successfully treated or interrupted therapy. In Africa, tuberculosis is associated with low Th1 and high Th2 activity in vivo, whereas close exposure to tuberculosis is associated with a high Th1/Th2 ratio. Patients with favorable outcome after treatment exhibit a higher Th1/Th2 ratio compared to patients with poor clinical outcome.


Seminars in Cancer Biology | 2015

Broad targeting of angiogenesis for cancer prevention and therapy

Zongwei Wang; Charlotta Dabrosin; Xin Yin; Mark M. Fuster; Alexandra Arreola; W.Kimryn Rathmell; Daniele Generali; Ganji Purnachandra Nagaraju; Bassel F. El-Rayes; Domenico Ribatti; Yi Charlie Chen; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Somaira Nowsheen; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; Bill Helferich; Xujuan Yang; Gunjan Guha; Dipita Bhakta; Maria Rosa Ciriolo; Katia Aquilano; Sophie Chen; Dorota Halicka; Sulma I. Mohammed; Asfar S. Azmi; Alan Bilsland

Deregulation of angiogenesis – the growth of new blood vessels from an existing vasculature – is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding “the most important target” may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the “Halifax Project” within the “Getting to know cancer” framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the “hallmarks” of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2003

T helper type 1 lymphocytes drive inflammation in human atherosclerotic lesions

Marisa Benagiano; Annalisa Azzurri; Alessandra Ciervo; Amedeo Amedei; Carlo Tamburini; Mauro Ferrari; John L. Telford; Cosima T. Baldari; Sergio Romagnani; Antonio Cassone; Mario M. D'Elios; Gianfranco Del Prete

Atherosclerotic lesions are infiltrated by macrophages and T lymphocytes, potentially reactive to pathogens. We studied in vivo activated T lymphocytes that infiltrate atherosclerotic plaques of Helicobacter pylori-infected patients with or without anti-Chlamydia pneumoniae antibodies. In all atherosclerotic lesions, T helper type 1 (Th1) cells were predominant. C. pneumoniae-specific T cells were detected only in the plaques of anti-C. pneumoniae seropositive patients, whereas H. pylori-specific T cells were found in the gastric mucosa but not in the plaques of the same patients. Plaque-derived Th1 cells expressed cytotoxicity, proapoptotic activity, and help for monocyte tissue factor production. Although multifactorial, atherosclerosis can be regarded as a Th1-driven immunopathological condition.


Seminars in Cancer Biology | 2015

Broad targeting of resistance to apoptosis in cancer

Ramzi M. Mohammad; Irfana Muqbil; Leroy Lowe; Clement Yedjou; Hsue Yin Hsu; Liang Tzung Lin; Markus D. Siegelin; Carmela Fimognari; Nagi B. Kumar; Q. Ping Dou; Huanjie Yang; Abbas K. Samadi; Gian Luigi Russo; Carmela Spagnuolo; Swapan K. Ray; Mrinmay Chakrabarti; James D. Morre; Helen M. Coley; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; William G. Helferich; Xujuan Yang; Chandra S. Boosani; Gunjan Guha; Dipita Bhakta

Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.


Journal of Immunology | 2005

Human 60-kDa Heat Shock Protein Is a Target Autoantigen of T Cells Derived from Atherosclerotic Plaques

Marisa Benagiano; Mario Milco D’Elios; Amedeo Amedei; Annalisa Azzurri; Ruurd van der Zee; Alessandra Ciervo; Gianni Rombolà; Sergio Romagnani; Antonio Cassone; Gianfranco Del Prete

Epidemiological studies suggest the potential importance of an inflammatory component in atherosclerosis and support the hypothesis that immune responses to Ags of pathogens cross-react with homologous host proteins due to molecular mimicry. Protein candidates involved may be the stress-induced proteins known as heat shock proteins (HSP). In this study, we report that atherosclerotic plaques harbor in vivo-activated CD4+ T cells that recognize the human 60-kDa HSP. Such in vivo-activated 60-kDa HSP-specific T cells are not detectable in the peripheral blood. In patients with positive serology and PCR for Chlamydia pneumoniae DNA, but not in patients negative for both, most of plaque-derived T cells specific for human 60-kDa HSP also recognized the C. pneumoniae 60-kDa HSP. We characterized the submolecular specificity of such 60-kDa HSP-specific plaque-derived T cells and identified both the self- and cross-reactive epitopes of that autoantigen. On challenge with human 60-kDa HSP, most of the plaque-derived T cells expressed Th type 1 functions, including cytotoxicity and help for monocyte tissue factor production. We suggest that arterial endothelial cells, undergoing classical atherosclerosis risk factors and conditioned by Th type 1 cytokines, express self 60-kDa HSP, which becomes target for both autoreactive T cells and cross-reactive T cells to microbial 60-kDa HSP via a mechanism of molecular mimicry. This hypothesis is in agreement with the notion that immunization with HSP exacerbates atherosclerosis, whereas immunosuppression and T cell depletion prevent the formation of arteriosclerotic lesions in experimental animals.


Seminars in Cancer Biology | 2015

Tissue invasion and metastasis: Molecular, biological and clinical perspectives

Wen Guo Jiang; Andrew James Sanders; M. Katoh; Hendrik Ungefroren; Frank Gieseler; Mark E. Prince; Sarah K. Thompson; Massimo Zollo; D. Spano; Punita Dhawan; Daniel Sliva; Pochi R. Subbarayan; Malancha Sarkar; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; Lin Ye; William G. Helferich; Xujuan Yang; Chandra S. Boosani; Gunjan Guha; Maria Rosa Ciriolo; Katia Aquilano; Sophie Chen; Asfar S. Azmi; W. N. Keith

Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks.

Collaboration


Dive into the Amedeo Amedei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge