Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ameet A. Chimote is active.

Publication


Featured researches published by Ameet A. Chimote.


PLOS ONE | 2012

KCa3.1 and TRPM7 Channels at the Uropod Regulate Migration of Activated Human T Cells

Zerrin Kuras; Yeoheung Yun; Ameet A. Chimote; Lisa Neumeier; Laura Conforti

The migration of T lymphocytes is an essential part of the adaptive immune response as T cells circulate around the body to carry out immune surveillance. During the migration process T cells polarize, forming a leading edge at the cell front and a uropod at the cell rear. Our interest was in studying the involvement of ion channels in the migration of activated human T lymphocytes as they modulate intracellular Ca2+ levels. Ca2+ is a key regulator of cellular motility. To this purpose, we created protein surfaces made of the bio-polymer PNMP and coated with ICAM-1, ligand of LFA-1. The LFA-1 and ICAM-1 interaction facilitates T cell movement from blood into tissues and it is critical in immune surveillance and inflammation. Activated human T lymphocytes polarized and migrated on ICAM-1 surfaces by random walk with a mean velocity of ∼6 µm/min. Confocal microscopy indicated that Kv1.3, CRAC, and TRPM4 channels positioned in the leading-edge, whereas KCa3.1 and TRPM7 channels accumulated in the uropod. The localization of KCa3.1 and TRPM7 at the uropod was associated with oscillations in intracellular Ca2+ levels that we measured in this cell compartment. Further studies with blockers against Kv1.3 (ShK), KCa3.1 (TRAM-34), CRAC (SKF-96365), TRPM7 (2-APB), and TRPM4 (glibenclamide) indicated that blockade of KCa3.1 and TRPM7, and not Kv1.3, CRAC or TRPM4, inhibits the T cell migration. The involvement of TRPM7 in cell migration was confirmed with siRNAs against TRPM7. Downregulation of TRPM7 significantly reduced the number of migrating T cells and the mean velocity of the migrating T cells. These results indicate that KCa3.1 and TRPM7 selectively localize at the uropod of migrating T lymphocytes and are key components of the T cell migration machinery.


American Journal of Physiology-cell Physiology | 2008

Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells

Peter K. Lauf; Sandeep Misri; Ameet A. Chimote; Norma C. Adragna

This study explores the nature of K fluxes in human lens epithelial cells (LECs) in hyposmotic solutions. Total ion fluxes, Na-K pump, Cl-dependent Na-K-2Cl (NKCC), K-Cl (KCC) cotransport, and K channels were determined by 85Rb uptake and cell K (Kc) by atomic absorption spectrophotometry, and cell water gravimetrically after exposure to ouabain +/- bumetanide (Na-K pump and NKCC inhibitors), and ion channel inhibitors in varying osmolalities with Na, K, or methyl-d-glucamine and Cl, sulfamate, or nitrate. Reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analyses, and immunochemistry were also performed. In isosmotic (300 mosM) media approximately 90% of the total Rb influx occurred through the Na-K pump and NKCC and approximately 10% through KCC and a residual leak. Hyposmotic media (150 mosM) decreased K(c) by a 16-fold higher K permeability and cell water, but failed to inactivate NKCC and activate KCC. Sucrose replacement or extracellular K to >57 mM, but not Rb or Cs, in hyposmotic media prevented Kc and water loss. Rb influx equaled Kc loss, both blocked by clotrimazole (IC50 approximately 25 microM) and partially by 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) inhibitors of the IK channel KCa3.1 but not by other K channel or connexin hemichannel blockers. Of several anion channel blockers (dihydro-indenyl)oxy]alkanoic acid (DIOA), 4-2(butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid (DCPIB), and phloretin totally or partially inhibited Kc loss and Rb influx, respectively. RT-PCR and immunochemistry confirmed the presence of KCa3.1 channels, aside of the KCC1, KCC2, KCC3 and KCC4 isoforms. Apparently, IK channels, possibly in parallel with volume-sensitive outwardly rectifying Cl channels, effect regulatory volume decrease in LECs.


Journal of Immunology | 2013

Selective Inhibition of KCa3.1 Channels Mediates Adenosine Regulation of the Motility of Human T Cells

Ameet A. Chimote; Peter Hajdu; Vladimir Kucher; Nina Boiko; Zerrin Kuras; Orsolya Szilagyi; Yeoheung Yun; Laura Conforti

Adenosine, a purine nucleoside, is present at high concentrations in tumors, where it contributes to the failure of immune cells to eliminate cancer cells. The mechanisms responsible for the immunosuppressive properties of adenosine are not fully understood. We tested the hypothesis that adenosine’s immunosuppressive functions in human T lymphocytes are in part mediated via modulation of ion channels. The activity of T lymphocytes relies on ion channels. KCa3.1 and Kv1.3 channels control cytokine release and, together with TRPM7, regulate T cell motility. Adenosine selectively inhibited KCa3.1, but not Kv1.3 and TRPM7, in activated human T cells. This effect of adenosine was mainly mediated by A2A receptors, as KCa3.1 inhibition was reversed by SCH58261 (selective A2A receptor antagonist), but not by MRS1754 (A2B receptor antagonist), and it was mimicked by the A2A receptor agonist CGS21680. Furthermore, it was mediated by the cAMP/protein kinase A isoform (PKAI) signaling pathway, as adenylyl-cyclase and PKAI inhibition prevented adenosine effect on KCa3.1. The functional implication of the effect of adenosine on KCa3.1 was determined by measuring T cell motility on ICAM-1 surfaces. Adenosine and CGS21680 inhibited T cell migration. Comparable effects were obtained by KCa3.1 blockade with TRAM-34. Furthermore, the effect of adenosine on cell migration was abolished by pre-exposure to TRAM-34. Additionally, adenosine suppresses IL-2 secretion via KCa3.1 inhibition. Our data indicate that adenosine inhibits KCa3.1 in human T cells via A2A receptor and PKAI, thereby resulting in decreased T cell motility and cytokine release. This mechanism is likely to contribute to decreased immune surveillance in solid tumors.


Journal of Biological Chemistry | 2012

Disruption of kv1.3 channel forward vesicular trafficking by hypoxia in human T lymphocytes.

Ameet A. Chimote; Zerrin Kuras; Laura Conforti

Background: Chronic hypoxia decreases Kv1.3 channel surface expression in T lymphocytes. Results: Hypoxia blocks clathrin-mediated forward trafficking of Kv1.3 in the trans-Golgi. Hypoxia down-regulates adaptor protein 1 (AP1), required for formation of clathrin-coated vesicles. Conclusion: Hypoxia disrupts AP1/clathrin mediated forward trafficking of Kv1.3 from the trans-Golgi to the plasma membrane. Significance: Mechanism for reduced immune surveillance by T cells in hypoxic tumors. Hypoxia in solid tumors contributes to decreased immunosurveillance via down-regulation of Kv1.3 channels in T lymphocytes and associated T cell function inhibition. However, the mechanisms responsible for Kv1.3 down-regulation are not understood. We hypothesized that chronic hypoxia reduces Kv1.3 surface expression via alterations in membrane trafficking. Chronic hypoxia decreased Kv1.3 surface expression and current density in Jurkat T cells. Inhibition of either protein synthesis or degradation and endocytosis did not prevent this effect. Instead, blockade of clathrin-coated vesicle formation and forward trafficking prevented the Kv1.3 surface expression decrease in hypoxia. Confocal microscopy revealed an increased retention of Kv1.3 in the trans-Golgi during hypoxia. Expression of adaptor protein-1 (AP1), responsible for clathrin-coated vesicle formation at the trans-Golgi, was selectively down-regulated by hypoxia. Furthermore, AP1 down-regulation increased Kv1.3 retention in the trans-Golgi and reduced Kv1.3 currents. Our results indicate that hypoxia disrupts AP1/clathrin-mediated forward trafficking of Kv1.3 from the trans-Golgi to the plasma membrane thus contributing to decreased Kv1.3 surface expression in T lymphocytes.


Cellular Physiology and Biochemistry | 2008

Lithium Fluxes Indicate Presence of Na-Cl Cotransport (NCC) in Human Lens Epithelial Cells

Peter K. Lauf; Ameet A. Chimote; Norma C. Adragna

During regulatory volume decrease (RVD) of human lens epithelial cells (hLECs) by clotrimazole (CTZ)–sensitive K fluxes, Na-K-2Cl cotransport (NKCC) remains active and K-Cl cotransport (KCC) inactive. To determine whether such an abnormal behavior was caused by RVD-induced cell shrinkage, NKCC was measured in the presence of either CTZ or in high K media to prevent RVD. NKCC transports RbCl + NaCl, and LiCl + KCl; thus ouabain-insensitive, bumetanide-sensitive (BS) or Cl-dependent (ClD) Rb and Li fluxes were determined in hyposmotic high NaCl media with CTZ, or in high KCl media alone, or with sulfamate (Sf) or nitrate as Cl replacement at varying Rb, Li or Cl mol fractions (MF). Unexpectedly, NKCC was inhibited by 80% with CTZ (IC50 = 31 µM). In isosmotic (300 mOsM) K, Li influx was ñ 1/3 of Rb influx in Na, 50% lower in Sf, and bumetanide-insensitive (BI). In hypotonic (200 mOsM) K, only the ClD but not BS Li fluxes were detected. At Li MFs from 0.1-1, Li fluxes fitted a bell-shaped curve maxing at ñ0.6 Li MF, with the BS fluxes equaling ñ¼ of the ClD-Li influx. The difference, i.e. the BI/ClD Li influx, saturated with increasing Li and Cl MFs, with Kms for Li of 11 with, and 7 mM without K, and of ñ46 mM for Cl. Inhibition of this K-independent Li influx by thiazides was weak whilst furosemide (<100 µM) was ineffective. Reverse transcription polymerase chain reaction and Western blots verified presence of both NKCC1 and Na-Cl cotransport (NCC). In conclusion, in hyposmotic high K media, which prevents CTZ-sensitive K flux-mediated RVD in hLECs, NKCC1, though molecularly expressed, was functionally silent. However, a K-independent and moderately thiazide-sensitive ClD-Li flux, i.e. LiCC, likely occurring through NCC was detected operationally and molecularly.


Biomaterials | 2013

Functionalized liposomes loaded with siRNAs targeting ion channels in effector memory T cells as a potential therapy for autoimmunity

Peter Hajdu; Ameet A. Chimote; Tyler H. Thompson; Youngmi Koo; Yeoheung Yun; Laura Conforti

Effector memory T cells (TM) play a key role in the pathology of certain autoimmune disorders. The activity of effector TM cells is under the control of Kv1.3 ion channels, which facilitate the Ca(2+) influx necessary for T cell activation and function, i.e. cytokine release and proliferation. Consequently, the knock-down of Kv1.3 expression in effector TMs may be utilized as a therapy for the treatment of autoimmune diseases. In this study we synthesized lipid unilamellar nanoparticles (NPs) that can selectively deliver Kv1.3 siRNAs into TM cells in vitro. NPs made from a mixture of phosphatidylcholine, pegylated/biotinylated phosphoethanolamine and cholesterol were functionalized with biotinylated-CD45RO (cell surface marker of TMs) antibodies via fluorophore-conjugated streptavidin (CD45RO-NPs). Incubation of T cells with CD45RO-NPs resulted into the selective attachment and endocytosis of the NPs into TMs. Furthermore, the siRNA against Kv1.3, encapsulated into the CD45RO-NPs, was released into the cytosol. Consequently, the expression of Kv1.3 channels decreased significantly in TMs, which led to a remarkable decrease in Ca(2+) influx. Our results can form the basis of an innovative therapeutic approach in autoimmunity.


Molecular Biology of the Cell | 2015

The C-terminus SH3-binding domain of Kv1.3 is required for the actin-mediated immobilization of the channel via cortactin

Peter Hajdu; Geoffrey V. Martin; Ameet A. Chimote; Orsolya Szilagyi; Koichi Takimoto; Laura Conforti

Polarization of Kv1.3 channels is a necessary step in T-cell activation and motility. Nonetheless, the mechanisms regulating the Kv1.3 channels membrane movement are not understood. This study provides evidence that cortactin, an actin-binding protein, controls Kv1.3 membrane motility via the channels SH3 domain.


Cancer Research | 2017

Kv1.3 Channels Mark Functionally Competent CD8+ Tumor-Infiltrating Lymphocytes in Head and Neck Cancer

Ameet A. Chimote; Peter Hajdu; Alexandros M. Sfyris; Brittany N. Gleich; K. Casper; Laura Conforti

Tumor-infiltrating lymphocytes (TIL) are potent mediators of an antitumor response. However, their function is attenuated in solid tumors. CD8+ T-cell effector functions, such as cytokine and granzyme production, depend on cytoplasmic Ca2+, which is controlled by ion channels. In particular, Kv1.3 channels regulate the membrane potential and Ca2+ influx in human effector memory T (TEM) cells. In this study, we assessed the contribution of reduced Kv1.3 and Ca2+ flux on TIL effector function in head and neck cancer (HNC). We obtained tumor samples and matched peripheral blood from 14 patients with HNC. CD3+ TILs were composed of 57% CD4+ (82% TEM and 20% Tregs) and 36% CD8+ cells. Electrophysiology revealed a 70% reduction in functional Kv1.3 channels in TILs as compared with peripheral blood T cells from paired patients, which was accompanied by a decrease in Ca2+ influx. Immunofluorescence analysis showed that CD8+ TILs expressing high Kv1.3 preferentially localized in the stroma. Importantly, high expression of Kv1.3 correlated with high Ki-67 and granzyme B expression. Overall, these data indicate that defective Kv1.3 channels and Ca2+ fluxes in TILs may contribute to reduced immune surveillance in HNC. Cancer Res; 77(1); 53-61. ©2016 AACR.


Journal of Cellular Physiology | 2009

Ion transport in a human lens epithelial cell line exposed to hyposmotic and apoptotic stress

Ameet A. Chimote; Norma C. Adragna; Peter K. Lauf

Membrane transport changes in human lens epithelial (HLE‐B3) cells under hyposmotic and apoptotic stress were compared. Cell potassium content, Ki, uptake of the K congener rubidium, Rbi, and water content were measured after hyposmotic stress induced by hypotonicity, and apoptotic stress by the protein‐kinase inhibitor staurosporine (STP). Cell water increased in hyposmotic (150 mOsm) as compared to isosmotic (300 mOsm) balanced salt solution (BSS) by >2‐fold at 5 min and decreased within 15 min to baseline values accompanied by a 40% Ki loss commensurate with cell swelling and subsequent cell shrinkage likely due to regulatory volume decrease (RVD). Loss of Ki, and accompanying water, and Rbi uptake in hyposmotic BSS were prevented by clotrimazole (CTZ) suggesting water shifts associated with K and Rb flux via intermediate conductance K (IK) channels, also detected at the mRNA and protein level. In contrast, 2 h after 2 µM STP exposure, the cells lost ∼40% water and ∼60% Ki, respectively, consistent with apoptotic volume decrease (AVD). Indeed, water and Ki loss was at least fivefold greater after hyposmotic than after apoptotic stress. High extracellular K and 2 mM 4‐aminopyridine (4‐AP) but not CTZ significantly reduced apoptosis. Annexin labeling phosphatidylserine (PS) at 15 min suggested loss of lipid asymmetry. Quantitative PCR revealed significant IK channel expression during prolonged hyposmotic stress. Results suggest in HLE‐B3 cells, IK channels likely partook in and were down regulated after RVD, whereas pro‐apoptotic STP‐activation of 4‐AP‐sensitive voltage‐gated K channels preceded or accompanied PS externalization before subsequent apoptosis. J. Cell. Physiol. 223: 110–122, 2010.


Journal of Autoimmunity | 2016

Nanovesicle-targeted Kv1.3 knockdown in memory T cells suppresses CD40L expression and memory phenotype.

Ameet A. Chimote; Peter Hajdu; Leah C. Kottyan; John B. Harley; Yeoheung Yun; Laura Conforti

Ca(2+) signaling controls activation and effector functions of T lymphocytes. Ca(2+) levels also regulate NFAT activation and CD40 ligand (CD40L) expression in T cells. CD40L in activated memory T cells binds to its cognate receptor, CD40, on other cell types resulting in the production of antibodies and pro-inflammatory mediators. The CD40L/CD40 interaction is implicated in the pathogenesis of autoimmune disorders and CD40L is widely recognized as a therapeutic target. Ca(2+) signaling in T cells is regulated by Kv1.3 channels. We have developed lipid nanoparticles that deliver Kv1.3 siRNAs (Kv1.3-NPs) selectively to CD45RO(+) memory T cells and reduce the activation-induced Ca(2+) influx. Herein we report that Kv1.3-NPs reduced NFAT activation and CD40L expression exclusively in CD45RO(+) T cells. Furthermore, Kv1.3-NPs suppressed cytokine release and induced a phenotype switch of T cells from predominantly memory to naïve. These findings indicate that Kv1.3-NPs operate as targeted immune suppressive agents with promising therapeutic potentials.

Collaboration


Dive into the Ameet A. Chimote's collaboration.

Top Co-Authors

Avatar

Laura Conforti

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Hajdu

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Zerrin Kuras

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yeoheung Yun

North Carolina Agricultural and Technical State University

View shared research outputs
Top Co-Authors

Avatar

Alexandra H. Filipovich

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lisa Neumeier

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge