Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amelia Bartholomew is active.

Publication


Featured researches published by Amelia Bartholomew.


Experimental Hematology | 2002

Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo

Amelia Bartholomew; Cord Sturgeon; Mandy Siatskas; Karen Ferrer; Kevin R. Mcintosh; Sheila Patil; Wayne Hardy; S. Devine; David S. Ucker; Robert Deans; Annemarie Moseley; Ronald Hoffman

OBJECTIVE Mesenchymal stem cells (MSCs), multipotential cells that reside within the bone marrow, can be induced to differentiate into various components of the marrow microenvironment, such as bone, adipose, and stromal tissues. The bone marrow microenvironment is vital to the development, differentiation, and regulation of the lymphohematopoietic system. We hypothesized that the activities of MSCs in the bone marrow microenvironment might also include immunomodulatory effects on lymphocytes. METHODS Baboon MSCs were tested in vitro for their ability to elicit a proliferative response from allogeneic lymphocytes, to inhibit an ongoing allogeneic response, and to inhibit a proliferative response to potent T-cell mitogens. In vivo effects were tested by intravenous administration of donor MSCs to MHC-mismatched recipient baboons prior to placement of autologous, donor, and third-party skin grafts. RESULTS MSCs failed to elicit a proliferative response from allogeneic lymphocytes. MSCs added into a mixed lymphocyte reaction, either on day 0 or on day 3, or to mitogen-stimulated lymphocytes, led to a greater than 50% reduction in proliferative activity. This effect could be maximized by escalating the dose of MSCs and could be reduced with the addition of exogenous IL-2. In vivo administration of MSCs led to prolonged skin graft survival when compared to control animals: 11.3 +/- 0.3 vs 7 +/- 0. CONCLUSIONS Baboon MSCs have been observed to alter lymphocyte reactivity to allogeneic target cells and tissues. These immunoregulatory features may prove useful in future applications of tissue regeneration and stem cell engineering.


Experimental Hematology | 2001

Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion

Steven M. Devine; Amelia Bartholomew; Nadim Mahmud; Mary Nelson; Sheila Patil; Wayne Hardy; Cord Sturgeon; Terry Hewett; Theodore Chung; Wendy Stock; Dorie Sher; Scott Weissman; Karen Ferrer; Joseph D. Mosca; Robert Deans; Annemarie Moseley; Ronald Hoffman

OBJECTIVE The human bone marrow contains mesenchymal stem cells capable of differentiating along multiple mesenchymal cell lineages. Using a non-human primate model, we sought to determine whether the systemic infusion of baboon-derived mesenchymal stem cells was associated with toxicity and whether these cells were capable of homing to and persisting within the bone marrow. MATERIALS AND METHODS Five baboons (Papio anubis) were administered lethal irradiation followed by intravenous autologous hematopoietic progenitor cells combined with either autologous (n = 3) or allogeneic (n = 2) mesenchymal stem cells that had been expanded in culture. In four of these baboons, the mesenchymal stem cells were genetically modified with a retroviral vector encoding either the enhanced green fluorescent protein gene (n = 3) or the human placental alkaline phosphatase gene (n = 1) for tracking purposes. A sixth animal received only intravenous gene marked autologous mesenchymal stem cells but no hematopoietic stem cells or conditioning irradiation. RESULTS Following culture, baboon mesenchymal stem cells appeared morphologically as a homogeneous population of spindle-shaped cells that were identified by the monoclonal antibodies SH-3 and SH-4. These cells did not express the hematopoietic markers CD34 or CD45. Baboon mesenchymal stem cells isolated from primary culture were capable of differentiating along both adipogenic and osteogenic lineages. There was no acute or chronic toxicity associated with the intravenous infusion of mesenchymal stem cells. In all five recipients of gene marked mesenchymal stem cells, transgene was detected in post-transplant bone marrow biopsies. In two animals receiving autologous mesenchymal stem cells, including the one non-conditioned recipient, transgene could be detected over 1 year following infusion. In one recipient of allogeneic gene marked mesenchymal stem cells, transgene was detected in the bone marrow at 76 days following infusion. CONCLUSION These data demonstrate that baboon mesenchymal stem cells: 1) are not associated with significant toxicity when administered intravenously, 2) are capable of homing to the bone marrow following intravenous infusion, and 3) have the capacity to establish residence within the bone marrow for an extended duration following systemic administration.


European Journal of Immunology | 2008

IFN-γ activation of mesenchymal stem cells for treatment and prevention of graft versus host disease

David Polchert; Justin Sobinsky; Gw Douglas; Martha Kidd; Ada Moadsiri; Eduardo Reina; Kristyn Genrich; Swati Mehrotra; Suman Setty; B Smith; Amelia Bartholomew

Graft versus host disease (GVHD), mediated by donor T cells, is a significant source of morbidity and mortality following allogeneic stem cell transplantation. Mesenchymal stem cells (MSC) can successfully treat ongoing graft versus host disease, presumably due to their ability to suppress donor T cell proliferation. Little is known about the potential of MSC to prevent GVHD. Here we show that bone marrow‐isolated MSC can suppress the development of GVHD if given after donor T cell recognition of antigen. IFN‐γ was required to initiate MSC efficacy. Recipients of IFN‐γ–/– T cells did not respond to MSC treatment and succumbed to GVHD. MSC, pre‐treated with IFN‐γ, became immediately active and could suppress GVHD more efficiently than a fivefold‐greater number of MSC that were not activated. When given at the time of bone marrow transplantation, activated MSC could prevent GVHD mortality (100% survival, p=0.006). MSC activation was dependent on the magnitude of IFN‐γ exposure, with increased IFN‐γ exposure leading to increased MSC suppression of GVHD. Activated MSC present a new strategy for preventing GVHD using fewer MSC.


Transplantation | 1997

Modifications of the conditioning regimen for achieving mixed chimerism and donor-specific tolerance in cynomolgus monkeys

Masaaki Kimikawa; David H. Sachs; Robert B. Colvin; Amelia Bartholomew; Tatsuo Kawai; Cosimi Ab

BACKGROUND We demonstrated previously that a nonmyeloablative preparative regimen can induce mixed chimerism and allograft tolerance in cynomolgus monkeys. METHODS The current studies were designed to clarify the importance and toxicity of various elements of the allotolerance conditioning regimen by: fractionating or reducing the whole-body irradiation (WBI) dosage; adding deoxyspergualine; or deleting donor bone marrow, cyclosporine, irradiation, or splenectomy. RESULTS Monkeys treated without donor bone marrow, cyclosporine, or irradiation did not develop chimerism or long-term allograft survival. One of three monkeys treated without splenectomy developed chimerism but died of a surgical complication. The other two did not develop chimerism and rejected by day 117. Six of six monkeys treated with 300 cGy of fractionated WBI developed chimerism. Five of these recipients had long-term graft survival. Only two of four monkeys treated with 250 cGy developed chimerism, so a 2-week course of deoxyspergualine was added. This led to chimerism in two monkeys, but one died of ureteral stenosis and the other died of allograft rejection. An unanticipated high incidence of ureteral complications felt to be secondary to rejection episodes and ischemic injury was observed in the long-term surviving animals. CONCLUSIONS All parameters of the original preparative regimen seem to be essential for consistent success. The degree of lymphocyte depletion was proportional to the WBI dose. Long-term graft survival was observed only in recipients achieving lymphocyte chimerism of > 1.5%. In this model, lymphocyte depletion seems to be the best predictor of chimerism, and significant lymphocyte chimerism seems to be important in achieving tolerance.


Human Gene Therapy | 2001

Baboon Mesenchymal Stem Cells Can Be Genetically Modified to Secrete Human Erythropoietin In Vivo

Amelia Bartholomew; Sheila Patil; Alastair Morgan Mackay; Mary Nelson; Diana Buyaner; Wayne Hardy; Joseph D. Mosca; Cord Sturgeon; Mandy Siatskas; Nadim Mahmud; Karen Ferrer; Robert Deans; Annemarie Moseley; Ronald Hoffman; Steven M. Devine

Human mesenchymal stem cells (MSCs) are capable of differentiating into multiple mesenchymal lineages including chondrocytes, osteocytes, adipocytes, and marrow stromal cells. Using a nonhuman primate model, we evaluated nonhuman primate MSCs as targets for gene therapy. Baboon MSCs (bMSCs) cultured from bone marrow aspirates appeared as a homogeneous population of spindle-shaped cells. bMSCs were capable of differentiating into adipocytes and osteocytes in vitro and chondrocytes in vivo. bMSCs were genetically modified with a bicistronic vector encoding the human erythropoietin (hEPO) gene and the green fluorescent protein (GFP) gene. Transduction efficiencies ranged from 72 to 99% after incubation of MSCs with retroviral supernatant. Transduced cells produced from 1.83 x 10(5) to 7.12 x 10(5) mIU of hEPO per 10(6) cells per 24 hr in vitro before implantation. To determine the capacity of bMSCs to express hEPO in vivo, transduced bMSCs were injected intramuscularly in NOD/SCID mice. In a separate experiment, transduced bMSCs were loaded into immunoisolatory devices (IIDs) and surgically implanted into either autologous or allogeneic baboon recipients. Human EPO was detected in the serum of NOD/SCID mice for up to 28 days and in the serum of five baboons for between 9 and 137 days. NOD/SCID mice experienced sharp rises in hematocrit after intramuscular injection of hEPO-transduced bMSCs. The baboon that expressed hEPO for 137 days experienced a statistically significant (p < 0.04) rise in its hematocrit. These data demonstrate that nonhuman primate MSCs can be engineered to deliver a secreted and biologically active gene product. Therefore, human MSCs may be an effective target for future human gene therapy trials.


British Journal of Nutrition | 2005

The case for strategic international alliances to harness nutritional genomics for public and personal health

Jim Kaput; Jose M. Ordovas; Lynnette R. Ferguson; Ben van Ommen; Raymond L. Rodriguez; Lindsay H. Allen; Bruce N. Ames; Kevin Dawson; Bruce German; Ronald M. Krauss; Wasyl Malyj; Michael C. Archer; Stephen Barnes; Amelia Bartholomew; Ruth Birk; Peter J. van Bladeren; Kent J. Bradford; Kenneth H. Brown; Rosane Caetano; David Castle; Ruth Chadwick; Stephen L. Clarke; Karine Clément; Craig A. Cooney; Dolores Corella; Ivana Beatrice Manica da Cruz; Hannelore Daniel; Troy Duster; Sven O. E. Ebbesson; Ruan Elliott

Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene-nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need for new methodologies and the use of comprehensive analyses of nutrient-genotype interactions involving large and diverse populations. The objective of the present paper is to stimulate discourse and collaboration among nutrigenomic researchers and stakeholders, a process that will lead to an increase in global health and wellness by reducing health disparities in developed and developing countries.


Transplantation | 1999

Long-term outcome and alloantibody production in a non-myeloablative regimen for induction of renal allograft tolerance

Tatsuo Kawai; Alain Poncelet; David H. Sachs; Shamila Mauiyyedi; Svetlan Boskovic; Siew Lin Wee; Dicken S.C. Ko; Amelia Bartholomew; Masaaki Kimikawa; Han Zhou Hong; Gregory Avedis Abrahamian; Robert B. Colvin; A. Benedict Cosimi

BACKGROUND Multilineage chimerism and long-term acceptance of renal allografts has been produced in non-human primates conditioned with a nonmyeloablative regimen. Our study was undertaken to evaluate the immunological and pathological status of long-term survivors and to define the role of splenectomy and of the primarily vascularized kidney in the regimen. METHOD Monkeys were treated with the basic regimen, including: total body irradiation, thymic irradiation, antithymocyte globulin, donor bone marrow transplantation, and a 4-week course of cyclosporine after which no further immunosuppression was given. They were divided into four groups according to the timing of kidney transplantation (KTx) and splenectomy as follows; group A (n=13): KTx and splenectomy on the day of donor bone marrow transplantation (day 0); group B (n=3): KTx on day 0 without splenectomy; group C (n=7): splenectomy on day 0 but delayed KTx until 3 to 16 weeks post-donor bone marrow transplantation; group D (n=3): both splenectomy and KTx delayed until day 120 post-donor bone marrow transplantation. RESULTS In group A, 11 of 13 monkeys developed chimerism and 9 monkeys achieved long-term survival of 4 to 70 months without evidence of chronic vascular rejection. Alloantibodies were detected in only one long-term survivor. In contrast, all three monkeys in group B developed alloantibodies and rejected their allografts. In group C, long-term survival without alloantibody production was observed in two of three monkeys that had developed chimerism. In group D, all three recipients were sensitized and rejected the kidney allografts rapidly after transplantation. CONCLUSIONS 1) Production of anti-donor antibody was prevented in most recipients that developed mixed chimerism in the regimens with splenectomy at the time of donor bone marrow transplantation. 2) If splenectomy is not included in the initial conditioning regimen, induction of B cell tolerance is less likely and the result is late onset of alloantibody production and allograft rejection. 3) Immediate transplantation of the kidney at the time of recipient conditioning is not essential for induction of donor specific hyporesponsiveness by bone marrow transplantation.


Diabetes | 2010

Mesenchymal Stem Cells Enhance Allogeneic Islet Engraftment in Nonhuman Primates

Dora M. Berman; Melissa Willman; Dongmei Han; Gary Kleiner; Norman M. Kenyon; Over Cabrera; Julie A. Karl; Roger W. Wiseman; David H. O'Connor; Amelia Bartholomew; Norma S. Kenyon

OBJECTIVE To test the graft-promoting effects of mesenchymal stem cells (MSCs) in a cynomolgus monkey model of islet/bone marrow transplantation. RESEARCH DESIGN AND METHODS Cynomolgus MSCs were obtained from iliac crest aspirate and characterized through passage 11 for phenotype, gene expression, differentiation potential, and karyotype. Allogeneic donor MSCs were cotransplanted intraportally with islets on postoperative day (POD) 0 and intravenously with donor marrow on PODs 5 and 11. Recipients were followed for stabilization of blood glucose levels, reduction of exogenous insulin requirement (EIR), C-peptide levels, changes in peripheral blood T regulatory cells, and chimerism. Destabilization of glycemia and increases in EIR were used as signs of rejection; additional intravenous MSCs were administered to test the effect on reversal of rejection. RESULTS MSC phenotype and a normal karyotype were observed through passage 11. IL-6, IL-10, vascular endothelial growth factor, TGF-β, hepatocyte growth factor, and galectin-1 gene expression levels varied among donors. MSC treatment significantly enhanced islet engraftment and function at 1 month posttransplant (n = 8), as compared with animals that received islets without MSCs (n = 3). Additional infusions of donor or third-party MSCs resulted in reversal of rejection episodes and prolongation of islet function in two animals. Stable islet allograft function was associated with increased numbers of regulatory T-cells in peripheral blood. CONCLUSIONS MSCs may provide an important approach for enhancement of islet engraftment, thereby decreasing the numbers of islets needed to achieve insulin independence. Furthermore, MSCs may serve as a new, safe, and effective antirejection therapy.


Cell Transplantation | 2006

Immunologic consequences of multiple, high-dose administration of allogeneic mesenchymal stem cells to baboons.

Kirstin J. Beggs; Alexander V. Lyubimov; Jade Borneman; Amelia Bartholomew; Annemarie Moseley; Robert A. Dodds; Michael P. Archambault; Smith A; Kevin R. Mcintosh

Mesenchymal stem cells (MSCs) express low immunogenicity and demonstrate immunomodulatory properties in vitro that may safely allow their transplantation into unrelated immunocompetent recipients without the use of pharmacologic immunosuppression. To test this hypothesis, three groups of baboons (three animals per group) were injected as follows: group 1 animals were injected with vehicle; group 2 animals were injected IV with DiI-labeled MSCs (5 × 106 MSCs/kg body weight) followed 6 weeks later by IM injections of DiO-labeled MSCs (5 × 106 MSCs/kg) from the same donor; and group 3 animals were treated similarly as group 2 except that MSCs were derived from two different donors. Muscle biopsies, performed 4 weeks after the second injection of MSCs, showed persistence of DiO-labeled MSCs in 50% of the recipients. Blood was drawn at intervals for evaluation of basic immune parameters (Con A mitogen responsiveness, PBMC phenotyping, immunoglobulin levels), and to determine T-cell and alloantibody responses to donor alloantigens. Host T-cell responses to donor alloantigens were decreased in the majority of recipients without suppressing the overall T-cell response to Con A, or affecting basic parameters of the immune system. All recipient baboons produced alloantibodies that reacted with donor PBMCs. Two of six animals produced alloantibodies that reacted with MSCs. We conclude that multiple administrations of high doses of allogeneic MSCs affected alloreactive immune responses without compromising the overall immune system of recipient baboons. The induction of host T-cell hyporesponsiveness to donor alloantigens may facilitate MSC survival.


Blood | 2012

Emerging roles for multipotent, bone marrow-derived stromal cells in host defense.

Jeffery J. Auletta; Robert Deans; Amelia Bartholomew

Multipotent, bone marrow-derived stromal cells (BMSCs, also known as mesenchymal stem cells [MSCs]), are culture-expanded, nonhematopoietic cells with immunomodulatory effects currently being investigated as novel cellular therapy to prevent and to treat clinical disease associated with aberrant immune response. Emerging preclinical studies suggest that BMSCs may protect against infectious challenge either by direct effects on the pathogen or through indirect effects on the host. BMSCs may reduce pathogen burden by inhibiting growth through soluble factors or by enhancing immune cell antimicrobial function. In the host, BMSCs may attenuate pro-inflammatory cytokine and chemokine induction, reduce pro-inflammatory cell migration into sites of injury and infection, and induce immunoregulatory soluble and cellular factors to preserve organ function. These preclinical studies provide provocative hints into the direction MSC therapeutics may take in the future. Notably, BMSCs appear to function as a critical fulcrum, providing balance by promoting pathogen clearance during the initial inflammatory response while suppressing inflammation to preserve host integrity and facilitate tissue repair. Such exquisite balance in BMSC function appears intrinsically linked to Toll-like receptor signaling and immune crosstalk.

Collaboration


Dive into the Amelia Bartholomew's collaboration.

Top Co-Authors

Avatar

Erzsebet Szilagyi

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Ronald Hoffman

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Polchert

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Mary Nelson

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Deans

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge