Amelia J. Carr
Deakin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amelia J. Carr.
Sports Medicine | 2011
Amelia J. Carr; Will G. Hopkins; Christopher J. Gore
Ingestion of agents that modify blood buffering action may affect high-intensity performance. Here we present a meta-analysis of the effects of acute ingestion of three such agents — sodium bicarbonate, sodium citrate and ammonium chloride — on performance and related physiological variables (blood bicarbonate, pH and lactate). A literature search yielded 59 useable studies with 188 observations of performance effects. To perform the mixed-model meta-analysis, all performance effects were converted into a percentage change in mean power and were weighted using standard errors derived from exact p-values, confidence limits (CLs) or estimated errors of measurement. The fixed effects in the meta-analytic model included the number of performance-test bouts (linear), test duration (log linear), blinding (yes/no), competitive status (athlete/nonathlete) and sex (male/female). Dose expressed as buffering mmoL/kg/body mass (BM) was included as a strictly proportional linear effect interacted with all effects except blinding. Probabilistic inferences were derived with reference to thresholds for small and moderate effects on performance of 0.5% and 1.5%, respectively. Publication bias was reduced by excluding study estimates with a standard error >2.7%. The remaining 38 studies and 137 estimates for sodium bicarbonate produced a possibly moderate performance enhancement of 1.7% (90% CL± 2.0%) with a typical dose of 3.5mmoL/kg/BM (~0.3 g/kg/BM) in a single 1-minute sprint, following blinded consumption by male athletes. In the 16 studies and 45 estimates for sodium citrate, a typical dose of 1.5mmoL/kg/BM (~0.5 g/kg/BM) had an unclear effect on performance of 0.0% (±1.3%), while the five studies and six estimates for ammonium chloride produced a possibly moderate impairment of 1.6% (±1.9%) with a typical dose of 5.5mmoL/kg/BM (~0.3 g/kg/BM). Study and subject characteristics had the following modifying small effects on the enhancement of performance with sodium bicarbonate: an increase of 0.5% (±0.6%) with a 1mmoL/kg/BM increase in dose; an increase of 0.6% (±0.4%) with five extra sprint bouts; a reduction of 0.6% (±0.9%) for each 10-fold increase in test duration (e.g. 1–10 minutes); reductions of 1.1%(±1.1%) with nonathletes and 0.7% (±1.4%) with females. Unexplained variation in effects between research settings was typically ±1.2%. The only noteworthy effects involving physiological variables were a small correlation between performance and pre-exercise increase in blood bicarbonate with sodium bicarbonate ingestion, and a very large correlation between the increase in blood bicarbonate and time between sodium citrate ingestion and exercise. The approximate equal and opposite effects of sodium bicarbonate and ammonium chloride are consistent with direct performance effects of pH, but sodium citrate appears to have some additional metabolic inhibitory effect. Important future research includes studies of sodium citrate ingestion several hours before exercise and quantification of gastrointestinal symptoms with sodium bicarbonate and citrate. Although individual responses may vary, we recommend ingestion of 0.3–0.5 g/kg/BM sodium bicarbonate to improve mean power by 1.7% (±2.0%) in high-intensity races of short duration.
International Journal of Sport Nutrition and Exercise Metabolism | 2016
Charles S. Urwin; Dan Dwyer; Amelia J. Carr
Sodium citrate induces alkalosis and can provide a performance benefit in high-intensity exercise. Previous investigations have been inconsistent in the ingestion protocols used, in particular the dose and timing of ingestion before the onset of exercise. The primary aim of the current study was to quantify blood pH, blood bicarbonate concentration and gastrointestinal symptoms after ingestion of three doses of sodium citrate (500 mg⋅kg-1, 700 mg⋅kg-1 and 900 mg⋅kg-1). Thirteen participants completed four experimental sessions, each consisting of a different dose of sodium citrate or a taste-matched placebo solution. Blood pH and blood bicarbonate concentration were measured at 30-min intervals via analysis of capillary blood samples. Gastrointestinal symptoms were also monitored at 30-min intervals. Statistical significance was accepted at a level of p < .05. Both measures of alkalosis were significantly greater after ingestion of sodium citrate compared with placebo (p < .001). No significant differences in alkalosis were found between the three sodium citrate doses (p > .05). Peak alkalosis following sodium citrate ingestion ranged from 180 to 212 min after ingestion. Gastrointestinal symptoms were significantly higher after sodium citrate ingestion compared with placebo (p < .001), while the 900 mg.kg-1 dose elicited significantly greater gastrointestinal distress than 500 mg⋅kg-1 (p = .004). It is recommended that a dose of 500 mg⋅kg-1 of sodium citrate should be ingested at least 3 hr before exercise, to achieve peak alkalosis and to minimize gastrointestinal symptoms before and during exercise.
Nutrients | 2018
Amelia J. Carr; Avish P. Sharma; Megan L. Ross; Marijke Welvaert; Gary J. Slater; Louise M. Burke
Although short (up to 3 days) exposure to major shifts in macronutrient intake appears to alter acid–base status, the effects of sustained (>1 week) interventions in elite athletes has not been determined. Using a non-randomized, parallel design, we examined the effect of adaptations to 21 days of a ketogenic low carbohydrate high fat (LCHF) or periodized carbohydrate (PCHO) diet on pre- and post-exercise blood pH, and concentrations of bicarbonate [HCO3−] and lactate [La−] in comparison to a high carbohydrate (HCHO) control. Twenty-four (17 male and 7 female) elite-level race walkers completed 21 days of either LCHF (n = 9), PCHO (n = 7), or HCHO (n = 8) under controlled diet and training conditions. At baseline and post-intervention, blood pH, blood [HCO3−], and blood [La−] were measured before and after a graded exercise test. Net endogenous acid production (NEAP) over the previous 48–72 h was also calculated from monitored dietary intake. LCHF was not associated with significant differences in blood pH, [HCO3−], or [La−], compared with the HCHO diet pre- or post-exercise, despite a significantly higher NEAP (mEq·day−1) (95% CI = (10.44; 36.04)). Our results indicate that chronic dietary interventions are unlikely to influence acid–base status in elite athletes, which may be due to pre-existing training adaptations, such as an enhanced buffering capacity, or the actions of respiratory and renal pathways, which have a greater influence on regulation of acid–base status than nutritional intake.
Applied Ergonomics | 2017
Kane Middleton; Amelia J. Carr
Effective Navy personnel have the physical ability to perform combat survivability tasks commensurate with their unique physical requirements due to the distinctive characteristics of naval platforms. The aim of this investigation was to identify the physically demanding whole-of-ship tasks that are performed by Navy personnel while at sea. A mixed method design was used to identify tasks, inclusive of focus groups and field observations. From a series of ten focus groups, nine tasks were deemed to be physically demanding whole-of-ship tasks. A subsequent field observation of a combat survivability training course resulted in a refined and expanded 33-item list of physically demanding whole-of-ship tasks across six categories, including; replenishment at sea, emergency response, firefighting, leak stop and repair, toxic hazard and casualty evacuation. The findings from this study provide the basis for the development of physical employment standards for whole-of-ship tasks within the Royal Australian Navy.
Journal of Sports Medicine and Physical Fitness | 2008
Amelia J. Carr; Brian Dawson; Knut Schneiker; Carmel Goodman; Brendan Lay
International Journal of Sport Nutrition and Exercise Metabolism | 2011
Amelia J. Carr; Gary J. Slater; Christopher J. Gore; Brian Dawson; Louise M. Burke
International Journal of Sport Nutrition and Exercise Metabolism | 2011
Amelia J. Carr; Christopher J. Gore; Brian Dawson
International Journal of Sports Physiology and Performance | 2012
Amelia J. Carr; Gary J. Slater; Christopher J. Gore; Brian Dawson; Louise M. Burke
Journal of Sports Science and Medicine | 2015
Amelia J. Carr; Philo U. Saunders; Brent S. Vallance; Laura A. Garvican-Lewis; Christopher J. Gore
International Journal of Sports Physiology and Performance | 2018
Amelia J. Carr; Laura A. Garvican-Lewis; Brent S. Vallance; Andrew P. Drake; Philo U. Saunders; Clare Humberstone; Christopher J. Gore